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1 This question isobligatory. Answer any10of the following. Each is worth
4 %. 40%

(a) Give a precise technical definition of a vector including the vector
transformation law.

(b) Prove thatδijaibj = aibi (summation convention).

(c) Define the dot (scalar)product of 2 vectors in two different ways. Prove
that two non-zero vectors are orthogonal if and only ifa.b = 0. Are
(1, 2, 3) and(−1,−2,−3) orthogonal vectors?

(d) Define the triple scalar producta.(b×c) of three vectorsa,b, c. Prove
that its magnitude corresponds to the volume of the parallelepiped de-
fined by the vectors. What is the volume of the parallelepiped defined
by the vectors with components(1, 0, 0), (1, 2, 1), (2, 3, 3)?

(e) Given that three non-zero vectors are not coplanar (so thata.(b×c) 6=
0), show that any other vectord can be expressed uniquely in the form
d = λa + µb + νc whereλ, µ, ν are constants.

(f) Define what is meant by the terms smooth, piecewise smooth. Sketch
the curve with parametric definitionr(t) = (t, |t|, 0), ) − 1 ≤ t ≤
1. Find a tangent vector at each point andprove that the curve is
piecewise smooth.

(g) A rigid body is rotating is rotating at constant rateΩ about an axis
fixed in the body so that the position vector of any point in the body is
given by:

r(t) = R cos (Ωt)i + R sin (Ωt)j + ck

whereR, c are known constants. Show that the velocity of any point
in the body can be writtenv(t) = Ωk× r where the axis of rotation is
taken to be in the direction of the unit vectork.

(h) Let f(x, y, z) = xy cos z andv(x, y, z) = (xyz, x + y + z, yz) be a
scalar and a vector field respectively. Compute∇f, div v,∇×v,∇2f .

(i) Prove that the function of two variablesf(x, y) = x2 + xy + 3x + 2y + 5
has a saddle point at(x, y) = (−2, 1).

(j) Use Taylor’s theorem to find a first order approximation forf(1.1, 3.7)
based on quantities estimated at the point(1, 3.5) if f(x, y) = x3y +
sin x.

(k) Find the inverse matrix, eigenvalues and eigenvectors of the matrix:
(

4 −5
2 −3

)
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(l) Draw level curves (contours) for the following functions of two vari-
ablesΩ(x, y) = 2x − y, Ω(x, y) = x2 + y2. Demonstrate thatΩxy =
Ωyx for the second of these functions.

(m) Find the directional derivative off(x, y, z) = x4yz at the point(1, 2, 3)
in the direction ofi + j.

(n) Show that the repeated integral
∫ 1
0

∫ y=1−x
y=0 (x + y)2 dydx evaluates to

1/4.

(o) Define what is meant by thecirculation of a vector field. Give a pre-
cise statement of Stokes’ theorem (relating a particular line and surface
integral).

2 (a) Define what is meant by the direction cosines of a line through the
origin. If l,m, n and l′,m′, n′ are the direction cosines of two lines
though the origin, use the cosine rule to prove that the angleθ between
the two lines must satisfy:

cos θ = ll′ + mm′ + nn′.

Prove that two lines through the origin are perpendicular if and only if
ll′ + mm′ + nn′ = 0. 6 %

(b) Define what is meant by the orthogonal projection of one line onto
another. IfOA has direction cosinesl, m, n andP has coordinates
(x, y, z) then prove that the orthogonal projection ofOP on OA is
lx + my + nz.

Deduce the transformation law for the change in the coordinates of a
point under rotation of axes in the formx′ = Lx or x′i = lijxj.

Consider a rotation whereby thex3(z) axis is held fixed and thex1

andx2 axes are rotated though900 in an anticlockwise direction when
viewed from above thex1x2 plane. If a point has coordinates(1, 0, 1)
before rotation, what are its coordinates in the rotated system? 6.5 %

3 (a) Suppose thatr(t) = (x(t), y(t), z(t)) is the parametric definition of a
curve in space. Find a parametric representationr(θ) = (x(θ), y(θ), z(θ))
for the circle in thexy plane (x2 + y2 = 1, z = 0). Hence find an ex-
pression for the arclength along this line measured from(1, 0, 0). Find
a tangent vector to this curve at any point. Using the expression for
the arclength, write down the intrinsic equation of this curve and find
its curvature. 7.5 %

(b) The position vector of a particle moving in a circle of radiusR is given
by r(t) = R cos (ωt)i+R sin (ωt)j whereω is a known constant andt
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is the time. Find the velocity and acceleration of the particle and show
that the acceleration is towards the centre of the circle. 5 %

4 (a) If Ω(x, y, z) is a scalar field, define what is meant by∇Ω and the level
surfaces ofΩ. Prove that the vector∇Ω is perpendicular to the level
surfaces ofΩ. 6 %

(b) If F (x, y, z) = x2y2z andx = t, y = t2, z = 2t, use the chain rule to
computedF

dt . Check your answer by writingF explicitly as a function
of t and differentiating. 6.5 %

5 (a) Give a limiting definition of the area integral
∫ ∫

R f(x, y)dA over the
two dimensional regionR. Show how such an integral can be used to
evaluate area of the region ofR. Write down a double integral which
represents the area of the circlex2+y2 = a2, z = 0. By transformation
to polar coordinates or otherwise evaluate this integral.

(b) If f = (3x2+6y)i−(14yz)j+(20xz2)k find the work done in moving
a particle in a force field given byf along a curveC given byy =
x2, z = x from (0, 0, 0) to (1, 1, 1). (Work done =

∫

f .dr). 12.5 %

6 Do either (a)or (b)

(a) Calculate the surface area of the cylindrical surface defined paramet-
rically by r(u, v) = (cos u, sin u, v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2. 12.5 %

(b) For a double integral, prove the change of variables ruledxdy =
|J |dudv where the Jacobian determinant|J | = |∂(x,y)

∂(u,v) | in the usual
notation.

7 Do any2 of the following:

(a) Define what is meant by the flux of a vector fieldu through a sur-
faceS. Give a precise statement of the divergence theorem. Use the
divergence theorem to write the surface integral

∫ ∫

S
u.dS

as a volume integral ifS is the spherex2 + y2 + z2 = a2, andu =
(x3, y3, z3). Show how the volume integral can be written in terms of
spherical coordinates using the Jacobian determinant (see last page)
and evaluate this integral.

(b) Define what is meant by a conservative vector field and prove that
every irrotational vector is conservative.
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Show that the vector fieldu = (y2 + z exp (xz), 2xy, x exp (xz)) is
irrotational and find a corresponding scalar potentialΩ(x, y, z) such
thatu = ∇Ω(x, y, z).

(c) Write down the tensor transformation law for a rank 2 tensor (in ma-
trix or index notation). Two sets of axesOxyz andOx′y′z′ are such
that the first set may be placed in the position of the second set by a ro-
tation of1800 about thez axis (i.e. thez axis is held fixed during this
rotation). Write down the corresponding matrix of direction cosines
and show how the tensor





1 0 0
2 1 0
1 0 2





transforms under this rotation of axes.

(d) Give a physical interpretation of the components of the stress tensor
Tij (or T) and the stress vector for a continuously deforming three di-
mensional medium and write down the relationship between the stress
tensor and the stress vectorv in terms of the stress exerted on a small
surface element with unit normaln̂. 12.5 %
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Useful results

Cosine rule:cos C = a2+b2−c2
2ab

Plane polar coordinates:x = r cos θ, y = r sin θ.
Jacobian determinant for polars:J = r.
Cylindrical polars:x = r cos θ, y = r sin θ, z = z.
Spherical polars:x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ; 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.
Jacobian determinant for sphericals:r2 sin θ.
Scalar differential surface element:dS = |ru × rv| dudv if r(u, v) defines the surface parametri-
cally.
Vector differential surface element:dS = ru×rv dudv if r(u, v) defines the surface parametrically.
Indefinite integral:

∫

sin3 udu = − cos u + 1/3 cos3 u.

Arclength for the curver(t) = (x(t), y(t), z(t)) is s(t) =
∫ t

t0

√

(dx
dt )

2 + (dy
dt )

2 + (dz
dt )

2dt.
Taylor series:f(x + h, y + k) = f(x, y) + hfx(x, y) + kfy(x, y) + O(h2 + k2).
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