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Pointwise error estimates for a singularly perturbed
time-dependent semilinear reaction-diffusion problems
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An initial-boundary-value problem for a semilinear reaction-diffusionagpn is considered. lIts diffu-
sion parametee? is arbitrarily small, which induces initial and boundary layers. It is shovat the
conventional implicit method might produce incorrect computed solutionaniform meshes. There-
fore we propose a stabilized method that yields a unique qualitativelgatosplution on any mesh.
Constructing discrete upper and lower solutions, we prove existendeagdigate the accuracy of dis-
crete solutions on layer-adapted meshes of Bakhvalov and Shishki tifpe established that the two
considered methods enjoy second-order convergence (with, inskeo€the Shishkin mesh, a logarith-
mic factor) in the discrete maximum norm, uniformly énfor £ < C(N~1 + M*l/z), whereN andM
are the numbers of mesh intervals in the space and time directions, treslyedNumerical results are
presented that support the theoretical conclusions.

Keywords semilinear reaction-diffusion, singular perturbation, maximum normoreestimate,
Bakhvalov mesh, Shishkin mesh, second order, upper and lowdiosisiu

1. Introduction
Consider the singularly perturbed semilinear reactidfusion equation

Ju= €2[u — U] + F(x,t,uy=0  for(x,t) € (0,1) x (0, T], (1.1a)

subject to the boundary and initial conditions

U(O,t) = gO(t)v U(l,t) - gl(t)a te [OvTL (1.1b)
u(x,0) = ¢ (x), x € 1[0,1]. (1.1¢c)

Heree¢ is a small positive parameter, and the functidngg, g1 and¢ are sufficiently smooth; further-
more, at the cornerf,0) and(1,0) of our domain we assume the standard compatibility conuitio
90(0) = ¢(0) andgs1(0) = ¢(1).

In the numerical analysis literature it is often assumed fhégt,u) > 0 for all (x,t,u) € [0,1] x
[0,T] x R. This global condition is nevertheless rather restrictiizeg., mathematical models of bio-
logical and chemical processes frequently involve prokleatated to (1.1) withf (x,t,u) that isnon-
monotonewith respect tay; see, e.g., (Murray, 199314.7), (Grindrod, 1991§2.3). Hence we drop
the assumption thaff, > 0 and consider problem (1.1) under weaker assumptionsiideddn §2, that
intrinsically arise from the asymptotic analysis of thisiplem.
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The reduced problem of (1.1) is defined by formally setng 0 in (1.1a), i.e.
f(x,t,up(x,t)) =0 for (x,t) € (0,1) x (0, T). (1.2)

As f, is not necessarily positive, this equation might have mpldtsolutions, and any solutiam of
(1.2) does not in general satisfy the boundary and initisd@tions in (1.1b) and (1.1c). Similarly,
the steady-state version of (1.1) might have multiple sohst In contrast, the initial-boundary-value
problem (1.1) always has at most one solution; see Propoditil below. Therefore, if problem (1.1) is
solved numerically, it is desirable that the computed sotuenjoys a similar property.

We discretize (1.1) on a tensor-product mgsk,tj)} in [0,1] x [0, T], where O=xp <Xy < --- <
Xy =1and O=tp <t; <--- <ty =T, and we use the notatidn := x; — xi_1 andk; =t; —t;_1 for the
local mesh sizes. One standard implicit discretizatioridE)is given by

‘ThUij 2282[5[—55?]Uij+f(Xi7tj,Uij):0 (1.3)

fori=1...,N—1andj=1,...,M, where we use backward differencing in time and the standard
three-point discretization in space:
U=V 2 . 2 Ui —Uij  Uj—Uig
v = Kj ’ Ay = hi +hi+1< hii1 hi )
We also set o= ¢(x;) fori=0,...,N, andUp; = go(tj), Un,; = 01(tj) for j=1,...,M.

Note that the conventional method (1.3), when applied onigoum mesh in time, might yield
incorrect and unstable computed solutions; see Figurdth(id centre). Here problem (1.1) was solved
with f = (2—u)(u—1)u(u+1) and¢ = 0.1+ 2x(1—X), go = 91 = 0.1. We observe thai(x, 2), which
is effectively the steady-state solution, is entirelyeliént from the computed solutiong at 2. We also
refer the reader to Figure 3 (left), where the numerical wetfi.3) is applied to a more complicated
problem (5.1) and again yields an incorrect computed siytivhich now looks stable and can be easily
mistaken for a correct one).

This instability can be explained noting thatif 1, in particular, ife? < kj, then the time derivative
terme23U, beingO(eZ/kj), becomes negligible; thus effectively at each time levebolee a steady-
state discrete equation and therefore at each time level iglet get any of the multiple steady-state
solutions. Furthermore, the space derivative tef@2U, being O(g2/(hi + hi;1)?), might become
negligible too, in which case we effectively solve the algébequationf (x;,tj,U;j) = 0 at each mesh
node, where this occurs.

0 1

FIG. 1. Computed solutions &t= 2 vs. the exact solution (dashed curve) for various metheds; 102, N =32, M = N2.
Left and centre: conventional method (1.3) fails to yieldreot computed solutions on the uniform mesh (left), and evémeif
Shishkin mesh (described §4.1(b); y = 1) is used in space combined with the uniform mesh in time (cpritight: stabilized
method (1.4) withC = 2 on the uniform mesh yields a qualitatively correct computgdtsn.
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To stabilize the conventional method (1.3), we generatiZeii some constar€ > 0, as follows:
‘j\dhljij = [2’125[—8253]0” +f(X@,tj,0ij)=O, éjzzmax{sz,ékj}. (1.4)

Here, as usual, we s&ko = ¢(x) fori =0,...,N, andUpj = go(tj), Un,j = qu(tj) for j = 1,...,M.
Clearly, (1.3) is a particular case of (1.4) with= 0. Compared to (1.3), in (1.4) we artificially
strengthen the time derivative term, replacatdy by £2&, which does not influence the consistency or-
der of the method, but under an appropriate choid@,afiways yields a unique computed solution; see
Proposition 1.2 below. Furthermore, Figures 1 and 3 ilaistthat the instability that we have observed,
is indeed cured by switching to the stabilized method (Iwyhiché is chosen using Proposition 1.2.

For uniqueness of solutions of the continuous problem @nt)) discrete problems (1.3) and (1.4)
we have the following results.

PROPOSITIONL.1 (UNIQUE CONTINUOUS SOLUTION Problem (1.1) has at most one solution.

Proof. The proof imitates the argument in (Pao, 1992, Theorem %d)vee sketch it here for com-
pleteness. Suppose (1.1) has two solutie@mdu on [0,1] x [0, T]. Then|ul,|U] < K; and therefore
fu> —Kz2in [0,1] x [0, T] x [—K1,Kj] for some positive constank§ andKs, which might depend oa
andT. Using the standard linearization technique and then #restormatiorz := (u— u)e—tKZ/fz, we

getsz[% - g—;]z+ (K2+ p)z=0wherep = p(x,t) = j‘ol fu(x,t,u+su—u))ds> —Kj. Sincezvanishes
for x=0,1 and fort = 0, by the maximum principle (Protter & Weinberger, 1999, flea 3), we have
z=0 for all (x,t). Note that this argument relies dp being continuous for all € R (otherwise, we

refer the reader to a solution non-uniqueness example m (292,51.6)). O

PROPOSITION1.2 (UNIQUE COMPUTED SOLUTION Let Uij be a solution of (1.4) and Ie?l,-2 > C*K;
for someC* > 0. If f, > —C* for all x, t, u, thenU is a unique solution of (1.4). K; < Uij <K for
some constanté; andK», andf, > —C* in [0,1] x [0, T] x [K1,Kz], thenU is a unique solution of (1.4)
betweerkK; andKs.

Proof. We imitate the proof of (Pao, 1985, Theorem 3.1) (where tlse ofe = £; = 1 was considered).
We present the proof here, in particular, to reveal the rblg in the uniqueness conditi(ﬁf > C*k;.
LetUj; be another solution of (1.4) and introduge := (Ujj —Uij) [1)_; (1+ ki 1 /&2)~%. A calculation
shows thaﬁf&;ii +HjZij = (?:j2+ K )[& (Uij —Uij)] M-, (1+k i /&2)~L. Therefore, applying the
standard linearization, we arrive at
g2 Ui
i 252 i

5 0Zij — &L+ | =5 + hij ) Zij =0,

1+kjllj/£j26t i O Zij (1+kjllj/3jz le) ij
wherep;j == [3 fu(x;,tj,Uij +5[Uij —Ujj])ds > —C*. As for some constari* > C* we havet? > Ck;,
then ;/(1+ ujkjéj‘z) > Wj/(1+ u,—/é*) and choosingu; sufficiently large, we can always make
ui/(1+ I.lj/é*) sufficiently close tcC*, and therefore, exceedir@. Now pij > 0 and, recalling that
Zij =0 forx = 0,1 andt; = 0, by the discrete maximum principle, we ggt= 0 for all i, j. O

REMARK 1.3 To apply Proposition 1.2 to the conventional method)(& have to impose a very
restrictive conditiork; < £2/C* on the time stej;, which would result in a very inefficient method. In
contrast, choosin@ sufficiently large in (1.4), we can always ensure a uniquepgdsd solution.

The paper is organized as follows. The ngXpresents our assumptions on problem (1.133lwe
discuss asymptotic properties of solutions of (1.1) andtrant lower and upper solutions. 34, layer-
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adapted meshes for solving (1.1) are described, and disanelogues of the upper and lower solutions
are used to obtain tight upper and lower bounds on the comsalations. Precise convergence results
for the numerical methods (1.3) and (1.4) are then deriveBadthvalov and Shishkin meshes. §5,
numerical results illustrate the sharpness of our thezakdirror estimates. Finallj6 summarizes our
conclusions.

Note that an asymptotic analysis of a version of (1.1) witluikann boundary conditions, which we
partly imitate in§3, was given in (Vasil'evat al., 1995,53.2.3). We also refer the reader to asymptotic
and numerical analyses for one- and two-dimensional stetadg versions of (1.1) by Fife (1973);
Nefedov (1995) and Sun & Stynes (1996); Kopteva & Stynes420Qopteva (2007), respectively.

Notation. Throughout this paper we 1& denote a generic positive constant that may take different
values in different formulas, but is always independeniNofM and . A subscriptedC (e.g.,Cy)
denotes a positive constant that is independenit, o and ¢ and takes a fixed value. For any two
quantitiesw; andws,, the notationw; = O(wz) meangw;| < Cwe.

2. Assumptionson the continuous problem

We shall examine solutions of (1.1) that exhibit boundard anitial layers. (In general, solutions
of (1.1) may also have interior transition layers, which wi# wonsider in a future paper.) As was
announced in the introduction, we drop the restrictive glaissumption thaf,(x,t,u) > 0 for all
(x,u) € [0,1] x [0, T] x R, and consider problem (1.1) under the following weaker @ggions.

e |t has astable reduced solutign.e. there exists a sufficiently smooth solutiagof (1.2) such
that
fu(x,t,up(x,t)) > y? >0 forall (x,t) €[0,1] x [0,T]. (A1)

e The boundary conditions satisfy

\
/ fIt,9ds>0 forallve (up(lt).g®], 1=01 te[0T. (A2
up(l.t)

Here the notatioria, b]’ is defined to b&a, b] whena < b and[b,a) whena > b, while (a,b]’ =0
whena=b.

e The initial condition is in the domain of attraction of thelteed solutiong, i.e. it satisfies

s f(x,0,up(x,0)+s) >0  forall se (0,¢(x) — Uo(x,0)]', x € [0,1]. (A3)

Note that ifg (t) = up(l,t) for | =0 orl = 1, then (A2) follows from (A1) combined with (1.2), while
if gi(t) = up(l,t) at some point € [0,T], then (A2) does not impose any restrictiongrat this point.
Similarly, if ¢ (X) ~ up(x,0), then (A3) follows from (A1) combined with (1.2), whilg(x) = ug(x, 0)
does not impose any restriction ¢grat this point.

Conditions (A1), (A2), (A3) intrinsically arise from the @aptotic analysis of problem (1.1) and
guarantee that there exists a unique solution(1.1), which exhibits boundary layers of widBi{e|In€|)
atx = 0,1 and an initial layer of widtfD(£?|Ing|) att = 0, while u =~ up in the interior subdomain of
(0,1) x (0, T] away fromx = 0,1 andt = O; see Theorem 3.9 for a precise statement. We also refer the
reader to Kopteva & Stynes (2004) for a detailed discussigAd), (A2) in one dimension, and also to
Remark 3.4 on the role of assumption (A3).
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We make two further simplifying assumptions to facilitater presentation. To avoid considering
cases, assume that

u(l,t) <g(t) for 1 =0,1, t € [0, T]; up(x,0) < ¢(x) for x e [0,1]. (2.2)

To ensure that problem (1.1) has sufficiently smooth sabgtiave also impose tHest-order com-
patibility conditionse?[g](0) — ¢"(1)] + f(1,0,¢()) = 0 for | = 0,1, i.e. at the domain corner§,0)
and(1,0). Dropping theO(£?) terms, we gef (1,0,¢ (1)) = 0 for| = 0,1. Combining these with (A3),
we conclude that

#(1)=0(0) =up(l,0) for [ =0,1. (2.2)
Strictly speaking, the terms?[g{(0) — ¢”(1)] = O(¢2) should remain, and therefore (2.2) should be
replaced by a more general relatigril) = g;(0) = up(l,0) + O(g?). We use (2.2) instead only to
simplify our presentation; all our further results applthitcs more general case too.

3. Asymptotic analysis, upper and lower solutions

We start this section by presenting a standard second-asyenptotic expansion. Furthermore, we
shall modify it to construct certain upper and lower solnsidhat provide tight control on the solutions
of our problem (1.1).

We shall use the functions

F(X,t,S) = f(X,t,Uo(X,t)+S), F(thaS; p) = f(X5t7UO(X7t)+S) —ps

The perturbed versio of the functionF is used, with p| sufficiently small, in the construction of upper
and lower solutions. In the constructions that follow, deiwill always denote a perturbed function.
The perturbed functions always depend on the parametart we will sometimes not show the explicit
dependence. Thus, we will sometimes whiéxt,s) for F(x,t,s; p). Note thatF (x,t,0) = 0 implies
F(x,t,0) = 0, Fxx(x,t,0) = 0 andR (x,t,0) = 0, and therefore we have

“EX(Xat75)| g C|S|? “EXX(XaLS)‘ g C|S|7 ||Et(X,t7S)‘ g C|S| (31)

We will occasionally use, for any functiay the notations
g2 =a(b) - g(a), dlc, =9(c) —9(b) — g(a). (3.2)

Sinceg(a+b) —g(a) —g(b)+g(0) =abd’(0), we see thag(0) =0 impliesg|:Lb = O(|ab|). Therefore,
under this notatiorf: (x,t,0) = 0 implies that

F(x,t,~)):: — O(jab)). (3.3)

Under our assumptions (Al1)-(A3), the solution of probleni)Exhibits boundary layers neas= 0
andx = 1, and an initial layer near= 0. Since the construction of the layer terms at each of the
boundary points is carried out independently of the layenseat the other boundary point, without loss
of generality, we assume throughout this section that

Uo(1,t) = 01(t) for t € [0,T], (3.4)

which implies that there is no boundary layexat 1. To describe the boundary layenat 0 and the
initial layer att = 0, we shall employ the stretched variabfes= x/& andt :=t/£2.
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3.1 Solution near the boundary=¢ 0, boundary-layer functions

In this subsection we construct boundary layer functioseeiated with the boundasy= 0; they use
the stretched variablé = x/€. Letvp(&,t) := Vp(&,t;0), and the functionsg(&,t; p) andvyi(&,t) be
solutions of the equations

—‘;2—;2’ +F(O,t,%;p) = O (3.5a)
32—;21 +v1Fs(0,t,v0) = —&F(0,t, Vo), (3.5h)

whereé > 0, subject to the boundary conditions
Y(0,t;p) = o(t) —Uo(0,t),  vi(0,t) =0,  Vop(co,t; p) =Vy(oo,t) =0. (3.5¢)

Note that the equation fag is a nonlinear autonomous ordinary differential equatiani|e the equation
for v1 is a linear ordinary differential equation; in these equdit and p appear as parameters. Note
also that/; is not a perturbed function as it does not depeng@.c@ur conditions (A1), (A2) are precisely
what is needed to ensure existence and asymptotic prapeftie andv;. To be more specific, for the
solvability and properties of the two problems described®§) we have the following result.

LEMMA 3.1 Sety? = min fy(0,t,uo(0,1)) > y?, wherey > 0 is from (A1). Then there igo € (0,?)

such that for al|p| < po there exist functionsg(&,t; p), vo(&,t) andvy(&,t) which satisfy (3.5). Fovg
andvp we have

Vo0,  |votev|<Ct, %—‘g’ >0, forall &t>0. (3.6)
Furthermore, for any arbitrarily small but fixéde (0,y. — ,/Po), there is a constails such that
0| vy 10" (d'vi| |9V
Z 9 Z 1 il z 1 0 < Cse M—vP0—0)¢ 3.7
agk’ agk‘* ot | T aﬂ‘* 0p‘ 5€ (3.7)

foré,t >0andk=0,...,4,1 =0,1,2.

Proof. The existence and most of the properties/@andvyp follow from (Kopteva & Stynes, 2004,
Lemma 2.3). Fory, we use a result presented in (Fife, 1973, Lemma 2.2) andl'@aset al.,, 1995,
§2.3.1). In particular, to obtain estimates (3.7), one olesethat the derivatives of andv; with respect
to & andt, as well a®/Vy/dp, all satisfy linear differential equations with the samféedential operator,
similar to the one in the equation (3.5b).

We especially elaborate on the proof|af + vi| < Ct as its analogues do not appear in the three
cited publications. Recall the corner compatibility cdimdi go(0) — up(0,0) = O from (2.2), which
implies |go(t) — Up(0,t)| < Ct. Combining this with\vo(&,t)| + |[v1(&,t)| < C|vo(0,t)| (which follows
from the cited analyses of andv;) andvp(0,t) = go(t) — up(0,t), yields the desired estimate. [

For later purposes we shall now obtain two estimates thatuevwyp, vo andv;. The first estimate is
concerned with the correction + vy to the reduced solutiony nearx = 0. We claim that

£2[2 — 9] (Vo+ &) + F(x.t,vo + evy) = O(£2). (3.8)

This immediately implies thal(uo + Vo + ev1) = O(£?). Noting that(up + Vo + €v1)|,_, = do(t) and
thatvp + vy is decaying ag§ — o, we now expect thalg + vo + €v; approximates a solutiomof our
problem (1.1) near the boundaxy= 0.
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Estimate (3.8) is standard in the asymptotic analysis. dbisined frome? [% — j—;} (Vo+evi) =

fﬂ%zz(vo + &ev1) + O(£?) combined with (3.5a) and (3.5b), which yield

,;%Zz(VM-svl) = F(0,t,vo) + €& Fx(0,t, Vo) + ev1 Fs(0,t,vo) = F (€&,t,vo + £v1) + O(€?).

Here we also used a Taylor series expansidR(@,t,vo+ €vi) in &, in which the quadratic remainder
terms were estimated usifBky < C|vo + €vi1| (which follows from (3.1)),|Fsd + |Fxs| < C, and then
(24 1)(|Vo| + [va]) < C (which follows from (3.7)). Thus (3.8) is established.

Our second auxiliary estimate is fag = vo:

2. . Vo+€evi
1% — 5] —vo) = —F(xt,)|  +pvo+0(e?+ p?). (3.9)
Vo+EVy
It follows from &2[ & — 0%22} (Vo — Vo) = 76%22(\70 —Vp) 4 O(£?) combined with (3.5a), which implies
02 . \70 . \70+€V1 . \70+£§ " \70+£§ .
—Z(VO_VO) = F(O7t7) +pV0= F(Xatv') _XFX(tha') _8V1FS(Xata') +pV0~
9¢ Vo Vo-HEVL Vo+€8 Vo-+€8

Recalling thatk = €& and noting that, by the estimate f%‘%@ in (3.7), we have1+¢&) |V — vo| = O(p),
yields (3.9).

3.2 Solution near = 0, initial-layer functions

In this subsection we construct initial-layer functionsdscribe the solution near= 0; they use the
stretched variable =t/£2. Letwo(x, T) := Wp(x, T;0), and the functiomg(x, T; p) be a solution of the

initial-value problem
0Wp o - -
S = —Fx0;p) for T>0,  ip(x,0;p) = $(x) - Uo(x.0). (3.10a)

Sincewp andwp describe a correction tay(x,t) for small values of, we look for a solution of (3.10a)
that satisfies an additional condition
Wo(X,00; p) = 0. (3.10b)

Herex € [0, 1] and p appear as parameters.
For each fixeck andp, problem (3.10) is a particular case of the auxiliary inti@ue problem

w=-¢(w) for T>0, w(0) = wn = 0, w(0) =0, (3.11)

Sl

for which we have the following result

LEMMA 3.2 Let a sufficiently smooth functiop satisfy
©(0) =0, ¢ (0) >0, @(s) >0 forall se (0, ). (3.12)

(i) Then problem (3.11) has a solutionOw < ay, and for any arbitrarily small but fixed € (0, ¢'(0)),
there is a constai@s such that

||+ || + ]| < wCse @O for 7> 0. (3.13)
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(ii) Set & := w/wy if wy >0, ord:=e ¥ if ay = 0. Then the related linear problem
EX+XP (@) =w(r) for t>0,  x(0)=x0, X()=0, (3.14)

where|(1)| < C(1+ 1) (1) for somem > 0, has a solution such thigt(1)| < C(Xo+ 1+ ™) (7).
If we also havexo =0 andy > 0, theny > O forall 7 > 0.

Proof. (i) If ap =0, thenw(t) = 0 for all T and the assertion follows. Otherwisegi > 0, consider
the phase planéw, o) for the equationy’ = —@(w). By (3.12), there is a trajectory that leaves the
point (an, —@(wp)) and enters the poin0,0), which is a fixed point for this equation. Furthermore,
since@(w) > 0 for all w € (0, wy), this entire trajectory will lie in the quarter plades > 0, o’ < 0};
therefore the corresponding solutiai{T) is positive and decreasing to 0. It remains to show that the
solution trajectory enter®, 0) ast — o, and also the exponential decay estimates (3.13). Notédhat
anyd € (0,¢'(0)), there exists; € (0, ap) such thafe/(0) — d|s< @(s) < [¢/(0) + d]sfor all s€ [0, s5].
Furthermore, there existg > 0 such thato(7s) = S5 (otherwise, ifw(T) > s5 for all 7, thenw/ (1) < —C

for some positive constaf®, which yields a contradictiom(e) = —co with (3.11)). Thus for allf > 15

we have¢/ (0) — 8)w < ' < [@/(0)+ 8] w, which implies thae (¢ (04317 (1) /w(15) < e [¢ (03I

for T > 15. The estimates faw andaw' in (3.13) follow immediately as)(15) < wp. Finally, the estimate
for w” in (3.13) is obtained noting thad’ = —w' ¢’ (w).

(i) To solve (3.14), note that the corresponding homogeawuatiorz% 6+ 6¢/(w) =0 has a positive
solution@ such tha(0) = 1. If ap > 0, then we recall from part (i) tha’ < 0 andC~* < |w/|/w < C
and thus choos@ := w'/«w/(0) > 0 so thaC~! < /& < C; otherwise, ifan = 0 and thugw = 0, then,

by (3.12), we havey' (w) = ¢/(0) > 0 and so choosé(7) := e ¥(OT = &. Now, the unique solution
of (3.14) is given by

x(1) = xo0()+0(r) [ 4T ar

where|Y(1)] < C(1+41™)0(1). The desired assertions follow. O
We now apply Lemma 3.2 to problem (3.10) as follows.

LEMMA 3.3 Setg := rr?(i)rh fu(x,0,Ug(x,0)) > y?, wherey > 0 is from (A1). Then there igo € (0, §)
Xe |0,

such that for allp| < po, problem (3.10) has a solutiom (X, 7; p). ForwWp andwg we have

7] Wo

0 < wo <Cx, I

>0, forall xe[0,1], 7 >0. (3.15)

Furthermore, for any arbitrarily small but fixede (0, yg — po), there is a constai@s such that

M‘ KW

‘ o'?wo
ot oxk

’4— ’<Cée (B—po=0)t (3.16)

forxe[0,1], T >0andk=0,...,4,1 =0,1,2.

Proof. For each fixedk and p, problem (3.10) is a particular case of the auxiliary probl.11)
with a solutionw := Wy, the initial conditionay := ¢ (x) — up(x,0), and the right-hand side function
@(s) := F(x,0,s,p) = f(x,0,up(x,0) + ) — ps for which we haveg/(s) = fy(x,0,up(x,0) +S) — p.
Note that (A1) implies thaip(0) = 0 and¢'(0) > yg —|p| > 0, while (A3) combined with (2.1) yields
@(s) > 0 for all s€ (0, ap] provided thatpg is chosen sufficiently small. Thus the hypotheses (3.12) of
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Lemma 3.2 are satisfied. Now Lemma 3.2(i) implies existericesplution 0< Wo < ¢(X) — Up(X,0)
and the estimates fof—rlrvvo, wherel = 0,1,2, in (3.16). Next, the bound € wp < Cxin (3.15) is
obtained fromwo = Wpo| p=0 and 0< Wp < ¢ (X) — ug(X, 0), noting that the corner compatibility condition
$(0) — up(0,0) = 0 from (2.2) impliesp (x) — up(x,0) < Cx.

It remains now to estimate the functiogzgv“vo and %}v”vo fork=1,...,4. Differentiating the equa-
tion in (3.10a) with respect tp, or k times with respect ta, we see that these functions are solutions
of the initial value problem (3.14) withy (w) = ¢'(Wp) = Fs(x,0,Wp) and various right-hand sides and
initial data. In particular, we havey := Wy and xo := 0 for x = dipwo, which, by Lemma 3.2(ii), im-
plies thataipwo > 0 and the estimate for this function in (3.16). Furthermdoe,x = ,%Wo we use
Y = —F(x,0,Wp) (for which we havey| < CWo, by (3.1)) andxo := ¢’(X) — Ugx(X,0); now the esti-
mate for%vvo in (3.16) is obtained by again applying Lemma 3.2(ii). Themaéing bounds in (3.16)
are obtained similarly, by evaluating the functiaisand xo corresponding tx = %}v”vo with k > 1,
and then applying Lemma 3.2(ii). O

<
<

For later purposes we shall now obtain two estimates thaliewiiy andwg. The first estimate is
concerned with the correctiom to the reduced solutiomy neart = 0. We claim that

2
2[5 — 25 wo + F (x,t,wo) = O(£?). (3.17)
This immediately implies thal(up + wo) = O(£?). Noting that(up +Wo)|,_, = ¢(x) and thatwo is
decaying ag — o, we expect thatly + wo approximates a solutiomof our problem (1.1) nedr= 0.

Estimate (3.17) is standard in asymptotic analysis. It igioled noting thatz[% — j—;]wo =
2wy + O(g2) and then recalling (3.10a), which yielggwo = —F (x,0,wp) = —F (x,t,wp) + O(€2).
Here we also used a Taylor series expansiofr 0ft,wp) in t, in which the linear remainder term
tR(x,f,wo) was estimated combining= £21 with |R| < Cwp (which follows from (3.1)) and then
invoking (3.16). Thus (3.17) is established.

Our second auxiliary estimate is fap = wy :

2.

2[% - %Z](WO_WO) = _F(Xat7')

Wo
£ " +pwo +O(2 + p?). (3.18)
0

It follows from &2[ & — ‘;’—XZZ} (Wo — Wo) = 2 (Wo — Wo) + O(¢2) combined with (3.10a), which implies

3 [~ Wo o Wo ~ |Wo .
£ (Wo —wo) = —F(x,0,~)‘ +pWo = —F(xt,-)| +tR(xt,-)| + pWo.
Wo Wo Wo

Recalling that = 21 and noting that, by the bound fgg% in (3.16), we havgl+ 1)|Wo—Wo| = O(p),
yields (3.18).

REMARK 3.4 Assumption (A3) is necessary for existence of the iligiger functionswvg andwp, which
are solutions of problem (3.10). This follows from (3.10)rgea particular case of problem (3.11), as
an extension of the phase plane analysis used in the proafrafa 3.2, shows that, iy (s)| < C for

all se [0, ap], then our conditions (3.12), wity (0) > 0 relaxed tap'(0) > 0, are necessary for problem
(3.11) having a solution.
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3.3 First-order asymptotic expansion

In the previous subsections we have defined the boundaey-fapctionsvy andvy and the initial-
layer functionwp. In this subsection, these functions and the reduced ealugi are assembled in the
following first-order asymptotic expansion for our probl€hil):

Uas(X,t) 1= Up(X,t) 4+ [Vo(&,t) + evi(&,t) ] +Wo(X, T). (3.19)

Note that no corner functions are needed in the above asyimptgpansion due to the compatibility
conditions (2.2). Indeed, examining problems (3.5)\gandvy, in view of (2.2) withl = 0, yields
Vo(&,0) =vy(&,0) =0 for all £ > 0O; similarly, examining problem (3.10) fav in view of (2.2), yields
wp(0,7) =wp(1,7) =0 for all T > 0. Therefore, we get

Uas%,0) = 9(X),  Uas(Ot) =go(t),  Uas(Lt) =gu(t) +O(£?), (3.20)
or in other wordsuag(x,0) = u(x,0) and |uag(l,t) — u(l,t)| = O(£?) at the boundary points= 0, 1.
It should be noted that the last relation in (3.20) followsnfruag(1,t) = up(1,t) + (vo+ev1)|€:1/£

combined with our assumption (3.4) and the estimage- sv;| < Cse~ M —9)/¢ < Ce? for & = 1/¢, for
which we invoked (3.7).
Furthermore, we have the following standard resultfiay.
LEMMA 3.5 The asymptotic expansiegsfrom (3.19) satisfie§uas= O(€?).
9 _ 9

Proof. First we combinee?[$ — 25 ]uo = O(&?) with (3.8) and (3.17) and, using notation (3.2), get

(Vo+&v1)+wo

Tas= £2[ G — 23] Uas+ F (.1, Vo + &V1 +Wo) = F(x,1,) +0(&?).

Vo+EV1, Wo
By (3.3), this yields
TUad < C|(Vo+ &v)Wo| +O(£2) < Cte 697 1 O(£2) < Ce2.

Here we estimateplp + £vy| using (3.6) andvp using (3.16), and also invoked= £21. O

3.4 Modified asymptotic expansion, existence of a solutiondmtwapper and lower solutions

In this section we construct upper and lower solutions, &edefore, prove an existence of a solution
in an O(£?) neighbourhood of our asymptotic expansion. The upper andrlgolutions are obtained
by perturbing our asymptotic expansion (3.19), in which wplace the boundary- and initial-layer
functionsvgp andwyg by their perturbed versiong andwp, and then add the ter@yp, as follows:

B(Xt; P) = Uo(x,t) + [To(&,t; ) + £V (&,t)] +Wio(x,T; P) + Cop. (3.21)
Occasionally we shall use an alternative equivalent reptasion
B(X,t; p) = Uas+V +W+Cop, where V :=Vg—Vg, W :=Wg—Wp. (3.22)
Note that forV andW here, by the estimates f%\?o and %wo in (3.7) and (3.16), we get

(A+&NVI<Cp,.  (A+T)W[<Cp (3.23)
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LEMMA 3.6 For the functiorB(x,t; p) of (3.21) we have8 = uas+ O(p). Furthermore, ifp > 0, then
B(X,t; —p) < Uas— Cop < Uas+Cop < B(X,t; p) forall (x,t) €[0,1] x [0, T]. (3.24)

Proof. The first assertion immediately follows from (3.22) and 83.2Noting thatuag(x,t) = B(x,t;0)
and then recalling the bounds’y/dp > 0 anddwp/dp > 0 from (3.6) and (3.15), yields the second
assertion (3.24). O

Furthermore, fofl 8 we get the following result.
LeEmmA 3.7 For all(x,t) € (0,1) x (0, T] we have

TB = Copfu(X,t,Up) + p[L+CoA] (Vo +Wo) +O(e2 + p?),

whereA = A (x,t) := fuu(X,t,up + 3 [Vo + Wo]) for somed = 3 (x,t) € (0,1).

Proof. By Lemma 3.5, we hav8u,s = 0(52). Thus it suffices to investigatE3 — Ju,s, for which, by
(3.22), we have

2 B
TP — Tuas = €[5 — %] (V+W)+ f(xt,-)

Uas

(3.25)

Now, recalling (3.9) and (3.18) yields

Vo+ev
’ 1_F(Xat7')

Vo+evp

2
2[5 — 52l (V+W) = —F(xt,)

W
W°+|O[Vo+Wo] +O(g%+ p?),
0

and therefore, using Taylor series expansions combindoMgit- W? < Cp? (see (3.23)), we get
e%[Z — g—;](v +W) = —VFs(x,t,vo+ &v1) —WFR(X,t,Wo) + p(Vo +Wo) + O(e2 + p?).  (3.26)

Similarly, we obtain

UastV-+W

Vo+&EVi+wo+V+W
= F(xt,)

f(xt,-) = [V +WIFs(X,t, Vo + £v1 +Wo) + O(p?)

Vo+EV1+Wo

= VR(xt,Vo+ eve) +WFR(x.t,Wo) +O(|V | + W (vo +evy) |+ p%).  (3.27)

Uas

Next, note that invokingv, + (V +W) = O(e + p), we get

f(xt )B = f(xt )ua#v+w+c0p_C0 [fu(X,t,Up + Vo +Wo) + O(g + p)]
sy UastV W - 5 by UastV+W - p U( , L, Uo (o] o p)
= COp[fu(Xat7UO)+)\(V0+W0)]—|—O(52_|_ pZ)) (3.28)

whereA = A (x,t) := fuu(X,t,up + 3 [Vo + Wo]) for somed = 3 (x,t) € (0,1).
Combining relations (3.25), (3.26), (3.27), (3.28) wiil,s = O(£2?), we arrive at

TB = Cop fu(X,t,Uo) + P[1+CoA] (Vo +Wo) + O(|VWo| + [W (Vo + &v1)|) + O(e2 + p?).

The desired assertion follows by invokifigwo| + W (Vo + evq)| < C(X|V| +t|W|) = O(ep). Here we
estimatedwo| and|vp + €vi| using (3.15) and (3.6), and then recallee £ andt = £21 combined
with £|V| < Cpandt|W| < Cpfrom (3.23). O
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COROLLARY 3.8 There ar€p > 0 andC; > 0 such that for al|p| < po we have

TB >  Copy’—Ci(e*+p?), if p>0,
TB < —Colp|y2+Ci(e24p?), if p<O.

Proof. Recall (A1) and the estimateg > 0, wp > 0 from (3.6), (3.15). Now choose0Cq < |A (x,t)| 1
for all x andt so that - CoA > 0. ]

Now we are ready to establish existence of a unique solutidf.) that lies in arO(&?) neigh-
bourhood of our asymptotic expansion.

THEOREM3.9 There is a sufficiently smadh > 0 such that for alk < &, there exists a unique solution
u of problem (1.1). Furthermore, for this solution we hduéx,t) — uag(x,t)| < Ce? for all (x,t) €
[0,1] x [0, T].

Proof. Setp = Cpe2, whereC, > 2C;/(Coy?) so thatCopy? > 2C;£2. Then, by Corollary 3.8, for
£ < 1/C; we getp < £ soCy (2 + p?) < 2C,£2 and therefore

TB(xt;—p) <O TR(Xt; p)- (3.29a)

Furthermore, in view of (3.24), choosi sufficiently large so thafyp = CoCoe2 dominates the term
O(£?) in (3.20), yields

B(x0;—p) <o (x) <B(x0;p),  B(t,—p)<a(t)<pB(tp) for =01 (3.29b)

By (3.24), we also have
B(x,t;—p) < B(x.t; p). (3.29¢)

Comparing (3.29) with (1.1), we see thi(x, t; — p) andB(x,t; p) are ordered lower and upper solutions,
respectively, for problem (1.1) (sometimes they are catletbred sub- and super-solutions); see Pao
(1992). Now, applying (Pao, 1992, Theorem 5.1) yields exise of a solutiom between(x,t; —p)
andfB(x,t; p):

Bx.t;—p) Su(xt) < B(xt;p).

Furthermore, Proposition 1.1 implies that this is a unigolit®n. Since, by Lemma 3.6, we have
B(X,t;£P) = Uas+ O(P) = Uas+ O(£?), then|u — uad < Ce2. O

4. Analysis of the numerical method

In this section we investigate the numerical method (1.4)erthat our results also apply to a more
conventional numerical method (1.3) as it is a particulaeaaf (1.4) withC = 0.

We make a further simplifying assumption to facilitate otggentation. Throughout this section we
take

e<C(NT+M~Y2), (4.1)

This is not a practical restriction, and from a theoretidaimpoint the analysis of a nonlinear problem
such as (1.1) would be very differentdfwere not small. Furthermore, by invoking higher-order agym
totic expansions (compared to (3.19)), condition (4.1) bamelaxed t& < C(N~% +M~%/2) for any
arbitrarily small but fixed € (0,1].
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4.1 Layer-adapted meshes, truncation error

We shall consider discrete problems (1.3) and (1.4) on twaulao layer-adapted meshes, which have
been shown to yield convergence of various numerical meathoiformly with respect to the the sin-
gular perturbation parameter(s). The meshes are prestmtéiie general case when the solution of
problem (1.1) has boundary layers botlxat 0 andx = 1 and also an initial layer &t= 0; see Figure 2.
For convenience, we nevertheless continue our analysissiséction under assumption (3.4).

4.1 (a) Bakhvalov mesfirst appeared in Bakhvalov (1969); we also refer the reagldRdoset al.
(2008). The mesh points;,tj) are defined a% = x(i/N) andt; =t(j/M), where the mesh-generating
functionsx(-), t(-) € C[0,1] are given by

1 for &¢c[0,6]
4, ) )
- t(n)—{ v Inl 57 for n €[0,60],

27In1
§) =14 3-d(3 f 0,3,
e {Zi x((l2 )) f8: ?iﬁ%,fﬂ T—do(1-n) for n (6,1

Here6 = 1/4—Cze and 6y = 1/2—C4£2 for some positive constant; andC,4; andd anddy are
chosen so that(&) andt(n) are continuous af = 6 andn = 6 respectively. These definitions xf¢)
andt(n) are valid only fore < $min{y,2C; '} ande? < 3 min{y?T,C,}, respectively, which is not
a practical restriction (otherwise, we s€€) = &£ and/ort(n) = Tn and get a uniform mesh in the
and/ort-direction). Note also that for a certain choiceGafandC,, one obtains the original Bakhvalov
mesh, for whichx(-), t(-) € C[0,1].

4.1 (b) Shishkin meslsee Shishkin (1992); Milleet al. (1996). This mesh is constructed as follows.
LetN/4 andM/2 be positive integers and set

o:=min{ 2InN, 3}, 00 := min{‘;—ilnM, -} (4.2)

Now the piecewise uniform mesfx;}N , is obtained by dividing the interval®, o], [0,1— o] and
[1-0,1] into N/4, N/2 andN/4 equidistant subintervals, respectively. Similarly thecpwise uni-
form mesh{tj}ﬂ-"':0 is obtained by dividing each of the intervad®; gp] and[gy, T] into M /2 equidistant
subintervals. In practice, one usually ka1 andoy < 1, so thex-mesh is coarse ojw,1— o] and
fine otherwise, while themesh is coarse oy, T] and fine on0, dy).

For the truncation errd?hB —TIB of Jhfrom (1.4) on these meshes we have the following estimate.

LEMMA 4.1 LetB(xt) = B(xt;p) be defined by (3.21), and let the me$tx;,tj)} be either the
Bakhvalov mesh of4.1(a), or the Shishkin mesh 6#.1(b). Then for all|p| < po, wherepg is a
sufficiently small constant, we have

7B (%15 p) — TB(X, tj; P)| < C(N"2IN"™N 4+ M~ In™M),
wherem = 0O for the Bakhvalov mesh (a) amd= 1 for the Shishkin mesh (b).

Proof. Choosepp in Lemmas 3.1 and 3.3 sufficiently small so that- ,/po > yandy2 Po > V%
next, choos® in (3.7) and (3.16) sufficiently small so thmf VPo—0 = yandy2 Po— O > Y2

Next, note thaf"g — IB = (824 — €2 & Wo — £2(87 — 3X2](vo+evo) +0(&?). By (3.7), imitating the
arguments in (Kopteva & Stynes, 20@3 4), we ge€?[82 — }(voJrevo) O(N—2In®"N). Recalling
(4.1), we observe that to establish the desired esumat:wtramams to show that

Ry:=€%[§ — o =O(M 1 InN™M),  Ry:= (&% —€?)aWp = O(M *In™M). (4.3)
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| I . . . .

Let MJ-( )= MaXx t)e (0.4 x [tj_1.4)] |%rW0\- Taylor series expansions yielR; | < C£2mln{kj|\/|]§2), Mfl)}z;

similarly, we getRy| < C(&7 — ez)kj‘le(o). Note that, by (3.16), here we haw(') <Ce 2 Vha/e
d' -2 9

asjr=¢& “ 4. Therefore

K _ . |
Ri| < Cmin{ 3, 1} Vi1/% Ry < Cmax{0,€ — g2k He Vi-1/E, (4.4)

We shall show that (4.4) implies (4.3) for the Bakhvalov mé&sghand the Shishkin mesh (b) separately.

(a) Case 13 < 6 —CsM~ for someCs > 1. Then we havé < M1t/ ({) = M*l‘;—z[% - ﬁ']_l

ande Yti-1/¢% = [1- 2(1,\7,—1)], which imply
EPYIE a1
Rif <CM == —em2(1+ M )<cmt,
i _ 1 11
2 M 2 M

Here we use(% — ﬁ > CsM~1, which follows from& — ﬁ > CsM L. Furthermore, choosirgs = C5((§)
sufficiently large, we obtaiékj < €2, which yieldsR, = 0.

Case 2:,\‘,14 > 6p—CsM~1 = 3 —C4e2—CsM~1. Now, a calculation shows that ; = t(j,g—l) >
;—iln(%[c4sz+ (Cs+1)M~1]~1) and thue™V*i-1/¢* < C(e2+M~1). Combining this with miff 5, 1} <
Ce~2min{M~1,£2} and the observation that — £k, * > 0 implies £2 < CM~, yields the bounds
IR1] <CM~tand|R;| < CM~1, respectively.

(b) For j < M/2 we havekj = Ce2M~1InM, which impliesR; < CM~1InM andR; = 0 (as in this
casek; < £2/C for sufficiently largeM). Otherwise, forj > M /2, we gee Vli-1/88 L @ ¥Vo0/e? — -1
and thugR;| <CM~t and|R;| <CM~L. O

4.2 Existence and accuracy, discrete upper and lower solutions

To establish existence of solutions of semilinear discegtgations (1.3) and (1.4), we invoke the theory
of discrete upper and lower solutions outlined in the follogwesult.

PrROPOSITION4.2 Assume that on an arbitrary me§lx;,tj)} there exist discrete functiorts and 3
such thatjj < Bj and

Thaij SO TG, aio<d(x)<Bo, 0oj<Goltj) <PBoj, anj<oi(t)) <P,
wherei =1,...,N—1, j=1,...,M. Then problem (1.4) has a solutity such thawi; < Ujj < ;.

Proof. The desired result is obtained imitating the proof of (P&85, Theorem 3.1) (where the case
of §; = € = 1 was considered). It is crucial in this argument that thereig operatof™+ Cl satisfies
the discrete maximum principle, wherés the identity operator an@ is an arbitrarily large but fixed
positive constant. Alternatively, one can get the asseniothis proposition noting that the mapping
gh: RINFD+M+L) _, R(N+D+(M+1) js 5 7-field; see Lorenz (1981); Kopteva & Stynes (2004). [

REMARK 4.3 The functionsx and 3 of Proposition 4.2 are called ordered discrete lower anceupp
solutions (or sub- and super-solutions) of the discretélpro (1.4).

Now we are prepared to state existence anphiform accuracy of our discrete solutions.
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FIG. 2. Solution of test problem (5.1) far= 104 (left); a layer-adapted mesh with= M = 16 (right).

THEOREM4.4 Letthe mesK(x;,tj)} be either the Bakhvalov mesh $1.1(a), or the Shishkin mesh of
§4.1(b). Then foN andM sufficiently large, there exist solutiokl; andU;; of discrete problems (1.3)
and (1.4), respectively, such that fore# 0,...,N, j =0,...,M we have

Uij —u(%,tj)] < C(N72In*N+M~1In™M),
IUij —u(x,tj))| < C(N"2In*N+M~1In™M),

wherem = 0 for the Bakhvalov mesh (a) amd= 1 for the Shishkin mesh (b).

Proof. As problem (1.3) is a particular case of problem (1.4), iffisa to prove the desired as-
sertions only forJj;. Setp = Cg(N~2In?"N +M~1In™M) and chooses sufficiently large so that,
invoking Lemma 4.1, we gqﬁhﬁ — TB| < Cop/2 for all |p| < po. In particular, this estimate holds
for B(x,t; £p), as for sufficiently largdN andM we havep < pp. Furthermore, in view of (4.1), for
sufficiently largeN andM, we enjoyCopy? — Cy1 (€2 + p?) > Cop/2. Now, invoking Corollary 3.8 with

p = £p, we getTB(x,t;—p) < —Cop/2 andTB(x,t; p) = Cop/2. These bounds immediately imply
Thﬁ(xi,tj;—ﬁj <0 andThB(xi,t,-; p) > 0O; thus we obtained a discrete analogue of estimate (3.89a) i
the proof of Theorem 3.9. Using (3.20) and (3.24), we nowaigitthe remaining part of this proof
and conclude thaB(x,tj; —p) andB(x;,tj; p) are discrete lower and upper solutions. Furthermore, by
Lemma 3.6 and Theorem 3.9, we haix;, tj; =p) = Uas+ O(P) = u+ O(2 + p). Finally, by Proposi-
tion 4.2, there exists;; betweenB (%, tj; —p) andB(x,t;; p); thereforeJ;; = u(x;,t;) + O(e2 + p), and
recalling assumption (4.1), we get the desired estimatéli]‘or |

5. Numerical results
Our model problem is (1.1) in the domair t) € [0, 1] x [0, 2] with
f(x,t,u) :=(2—u)(U—u)u(u—Uup), whereuy:=1-3sin(Z—t), i:=—(x*+3). (5.1)

The corresponding reduced problem (1.2) has two stabléi@atiu; andu, and two unstable solutions
0 and 2. We use the boundary conditigaét) = 0.6e"t — 0.5 andg; (t) = 0.2e~! — 0.1, and the initial
conditiong (x) = 0.1. A calculation shows that the boundary conditions sa(i88) for bothug = u;
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Fic. 3. Uniform mesh: conventional method (1.3) fails to produceraect computed solution (left); stabilized method (1.4hwi
C = 4 yields a qualitatively correct computed solution (riglat}= 104, N =32, M = N2.

andug = up. But (A3) is satisfied only for the stable reduced solutige= u; (in other words, our initial
condition is in the domain of attraction af). Therefore, away fromm =0, x = 1 andt = 0, the unique
solutionu = uy; see Figure 2 (left). As we havia(x,t,u;) > 1.1, we usey = 0.9 in our calculations.

To solve the discrete nonlinear problems (1.3) and (1.4t éme level we used Newton’s method
with the initial guess equal to the computed solution at tfevipus time level. At least four iterations
were performed; then the stopping criterion was applied boéh max|‘.TrUi,-| and the difference be-
tween two successive iterants should not exceed the toleid 1012,

First, we compare the numerical methods (1.3) and (1.4)ieppb the test problem (5.1) on a
uniform mesh; see Figure 3. Similarly to Figure 1, we obsé¢net the conventional method (1.3) fails
to produce a correct computed solution (left), while swiitghto the stabilized method (1.4) with= 4
(chosen using Proposition 1.2), we get a qualitativelyexircomputed solution (right).

On the layer-adapted meshes of Bakhvalov and Shishkin bgtk the numerical methods (1.3) and
(1.4) produce qualitatively and quantitatively correatnputed solutions. To be more precise, we used
the Bakhvalov mesh of4.1(a) withCz = 2y~1 andC4 = (y?T) %, and the Shishkin mesh #.1(b)
with InN and InM in (4.2) replaced by ItN/4) and INM/2) (as Theorem 4.4 also applies to this version
of the Shishkin mesh); for both meshes weyset0.9 andT = 2. Tables 1-4 show rates of convergence
and maximum nodal errors computed as described in (KopteSty&es, 200434) (for each pair oN

Table 1. Conventional method (1.3) on the Bakhvalov mesh. Ctatipnal rates in (N~1)" (upper part) and maximum nodal
errors (lower part).

N | e=101 £=102 =103 e=10% £=10° £=10% £=107 ¢e=108 | M

32 1.94 2.06 2.07 2.07 2.07 2.07 2.07 2.07| 2.07
64 2.02 2.01 2.01 2.01 2.01 2.01 2.01 2.01| 201
128 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00f 2.00

32 8.02e-3 1.70e-2 1.72e-2 1.72e-2 1.72e-2 1.72e-2 1.72e-2 72e® | 1.72e-2
64 2.08e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3 09e48 | 4.09e-3
128 | 5.14e-4 1.01e-3 1.01e-3 1.02e-3 1.02e-3 1.02e-3 1.02e-3 02eB | 1.02e-3
256 1.28e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4 53ed | 2.53e-4




17 of 18

Error estimates for a singularly perturbed semilinear reaetiiffusion problem

Table 2. Stabilized method (1.4) wig= 4 on the Bakhvalov mesh. Computational ratés (N~1)" (upper part) and maximum
nodal errors (lower part).

N | e=101 £=102 £=103 £=10% £=10° £=10% &=107 ¢e=108 | M
32 1.94 2.05 2.06 2.06 2.06 2.06 2.06 2.06| 2.06
64 2.02 1.99 1.99 1.99 1.99 1.99 1.99 1.99| 1.99
128 2.00 2.05 2.00 2.00 2.00 2.00 2.00 2.00| 2.00
32| 7.98e-3 197e2  2.00e-2  2.0le2 20le2 2.0le2  2.0le-2 0le2 | 2.0le-2
64 2.08e-3 4.76e-3 4.80e-3 4.81e-3 4.81e-3 4.81e-3 4.81e-3 8led® | 4.81le-3
128 | 5.14e-4  1.19e-3  121e-3  12le-3  1.21e-3  1.21e3  1.21e-3 2leR | 1.21e-3
256 | 1.28e-4  2.88e-4  3.0le4  3.02¢e-4  3.02e-4  3.02e-4  3.02e-4 02e3 | 3.02e-4

Table 3. Conventional method (1.3) on the Shishkin mesh. Caatipogl rates in (N~1In(N/4))" (upper part) and maximum
nodal errors (lower part).

N | e=101 £=102 £=10% £=10% £=105 £=10% &=107 e=108 | M
32 3.34 2.45 2.45 2.45 2.45 2.45 2.45 2.45| 245
64 2.96 2.04 2.04 2.04 2.04 2.04 2.04 2.04| 2.04
128 271 2.00 2.01 2.01 2.01 2.01 2.01 2.01| 2.00
32 | 937e-3  407e2  407e2  407e-2  407e2  407e2  4.07e-2 07e® | 4.07e-2
64 | 2.42e-3  15le-2  15le2  15le-2  15le-2  15le-2  1.5le-2 5le®2 | 1.5le-2
128 6.03e-4 5.77e-3 5.77e-3 5.78e-3 5.78e-3 5.78e-3 5.78e-3 78e®R | 5.78e-3
256 | 1.5le-4  2.07e-3  2.07e-3  2.07e-3 2.07e-3  2.07e-3  2.07e-3 07ed | 2.07e-3

Table 4. Stabilized method (1.4) with= 4 on the Shishkin mesh. Computational ratéa (N-*In(N/4))" (upper part) and
maximum nodal errors (lower part).

N | e=101 =102 =103 e=10% =105 £=10° ¢=107 ¢=108 | "&
32| 322 2.55 2.56 2.56 2.56 2.56 2.56 2.56| 2.56
64 | 296 2.03 2.03 2.03 2.03 2.03 2.03 2.03| 2.03
128 | 271 1.99 1.99 1.99 1.99 1.99 1.99 1.99| 1.99
32 | 892e3 413e2 4lde2  4l1de2  414e2  4lde2  4lde2 ldel | 4.14e-2
64 | 24203  147e2  147e2  147e-2  147e2  147e2  147e-2 47eR | 147e-2
128 | 6.03e-4  567e-3  567e3  567e-3  567e3  5.67e-3  567e-3 67eR | 5.67e-3
256 | 15le-4  2.06e-3  2.05e-3  205e-3  2.05e-3  2.05e-3  2.05e-3 05e& | 2.06e-3

andM, a solution on an auxiliary mesh was used witth @&xd M mesh intervals in the space and time
directions, respectively).

Examining Tables 1-4, we conclude that the errors stakageapproaches 0 and, furthermore, the
convergence rates confirm the sharpness of the bounds oférheb4. Comparing the conventional
method (1.3) and the stabilized method (1.4), we observeditlaough the errors of the stabilized
method are slightly larger on the Bakhvalov mesh, on theidensd layer-adapted meshes both the
methods enjoy quite simila-uniform accuracy.
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6. Conclusions

We have shown that the conventional implicit method (1.3)hhproduce incorrect and unstable com-
puted solutions on uniform meshes; see Figures 1 and 3. fDneree propose a stabilized method
(1.4), which involves a constant parame(ﬁab 0. For this method, Proposition 1.2 prescribes a choice
of C that ensures uniqueness of the computed solution. Furtrerraur numerical results suggest that
under this choice of, switching to the stabilized method cures the instabilitg gields qualitatively
correct computed solutions on any mesh.

We theoretically investigated these two methods on lagaepted meshes of Bakhvalov and Shishkin
types and established their second-order convergendg, {withe case of the Shishkin mesh, a logarith-
mic factor) in the discrete maximum norm, uniformlyarfor £ < C(N~1+M~1/2); see Theorem 4.4.

Although both the considered methods yield accurate coedpslutions on layer-adapted meshes,
we note that the conventional method (1.3) is unstable daicemeshes, which might be unacceptable,
e.g., if a layer-adapted mesh is constructed adaptivedytirsy from an unsophisticated initial mesh.
Therefore we advocate the stabilized method (1.4) overaheentional method (1.3).
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