
IMA Journal of Numerical Analysis(2005) Page 1 of 18
doi: 10.1093/imanum/dri000

Pointwise error estimates for a singularly perturbed
time-dependent semilinear reaction-diffusion problem∗

NATALIA KOPTEVA AND SIMONA BLANCA SAVESCU†

Mathematics and Statistics Department, University of Limerick,

Limerick, Ireland.

An initial-boundary-value problem for a semilinear reaction-diffusion equation is considered. Its diffu-
sion parameterε2 is arbitrarily small, which induces initial and boundary layers. It is shown that the
conventional implicit method might produce incorrect computed solutionson uniform meshes. There-
fore we propose a stabilized method that yields a unique qualitatively-correct solution on any mesh.
Constructing discrete upper and lower solutions, we prove existence andinvestigate the accuracy of dis-
crete solutions on layer-adapted meshes of Bakhvalov and Shishkin types. It is established that the two
considered methods enjoy second-order convergence (with, in the case of the Shishkin mesh, a logarith-
mic factor) in the discrete maximum norm, uniformly inε for ε 6 C(N−1 + M−1/2), whereN andM
are the numbers of mesh intervals in the space and time directions, respectively. Numerical results are
presented that support the theoretical conclusions.

Keywords: semilinear reaction-diffusion, singular perturbation, maximum norm error estimate,
Bakhvalov mesh, Shishkin mesh, second order, upper and lower solutions.

1. Introduction

Consider the singularly perturbed semilinear reaction-diffusion equation

Tu≡ ε2[ut −uxx]+ f (x, t,u) = 0 for (x, t) ∈ (0,1)× (0,T], (1.1a)

subject to the boundary and initial conditions

u(0, t) = g0(t), u(1, t) = g1(t), t ∈ [0,T], (1.1b)

u(x,0) = ϕ(x), x∈ [0,1]. (1.1c)

Hereε is a small positive parameter, and the functionsf , g0, g1 andϕ are sufficiently smooth; further-
more, at the corners(0,0) and(1,0) of our domain we assume the standard compatibility conditions
g0(0) = ϕ(0) andg1(0) = ϕ(1).

In the numerical analysis literature it is often assumed that fu(x, t,u) > 0 for all (x, t,u) ∈ [0,1]×
[0,T]×R. This global condition is nevertheless rather restrictive. E.g., mathematical models of bio-
logical and chemical processes frequently involve problems related to (1.1) withf (x, t,u) that isnon-
monotonewith respect tou; see, e.g., (Murray, 1993,§14.7), (Grindrod, 1991,§2.3). Hence we drop
the assumption thatfu > 0 and consider problem (1.1) under weaker assumptions, described in§2, that
intrinsically arise from the asymptotic analysis of this problem.

∗This publication has emanated from research conducted with the financial support of Science Foundation Ireland under the
Research Frontiers Programme 2008; Grant 08/RFP/MTH1536.

†Email: Natalia.Kopteva@ul.ie; Simona.Savescu@ul.ie

IMA Journal of Numerical Analysisc© Institute of Mathematics and its Applications 2005; all rights reserved.



2 of 18 N. KOPTEVA AND S. B. SAVESCU

The reduced problem of (1.1) is defined by formally settingε = 0 in (1.1a), i.e.

f (x, t,u0(x, t)) = 0 for (x, t) ∈ (0,1)× (0,T). (1.2)

As fu is not necessarily positive, this equation might have multiple solutions, and any solutionu0 of
(1.2) does not in general satisfy the boundary and initial conditions in (1.1b) and (1.1c). Similarly,
the steady-state version of (1.1) might have multiple solutions. In contrast, the initial-boundary-value
problem (1.1) always has at most one solution; see Proposition 1.1 below. Therefore, if problem (1.1) is
solved numerically, it is desirable that the computed solution enjoys a similar property.

We discretize (1.1) on a tensor-product mesh{(xi , t j)} in [0,1]× [0,T], where 0= x0 < x1 < · · · <
xN = 1 and 0= t0 < t1 < · · · < tM = T, and we use the notationhi := xi −xi−1 andk j = t j − t j−1 for the
local mesh sizes. One standard implicit discretization of (1.1) is given by

T
hUi j := ε2 [δt −δ 2

x ]Ui j + f (xi , t j ,Ui j ) = 0 (1.3)

for i = 1, . . . ,N− 1 and j = 1, . . . ,M, where we use backward differencing in time and the standard
three-point discretization in space:

δtUi j :=
Ui j −Ui, j−1

k j
, δ 2

x Ui j :=
2

hi +hi+1

(Ui+1, j −Ui j

hi+1
− Ui j −Ui−1, j

hi

)

.

We also setUi,0 = ϕ(xi) for i = 0, . . . ,N, andU0, j = g0(t j), UN, j = g1(t j) for j = 1, . . . ,M.
Note that the conventional method (1.3), when applied on a uniform mesh in time, might yield

incorrect and unstable computed solutions; see Figure 1 (left and centre). Here problem (1.1) was solved
with f = (2−u)(u−1)u(u+1) andϕ = 0.1+2x(1−x), g0 = g1 = 0.1. We observe thatu(x,2), which
is effectively the steady-state solution, is entirely different from the computed solutions att = 2. We also
refer the reader to Figure 3 (left), where the numerical method (1.3) is applied to a more complicated
problem (5.1) and again yields an incorrect computed solution (which now looks stable and can be easily
mistaken for a correct one).

This instability can be explained noting that ifε � 1, in particular, ifε2� k j , then the time derivative
termε2δtU , beingO(ε2/k j), becomes negligible; thus effectively at each time level wesolve a steady-
state discrete equation and therefore at each time level we might get any of the multiple steady-state
solutions. Furthermore, the space derivative termε2δ 2

x U , beingO(ε2/(hi + hi+1)
2), might become

negligible too, in which case we effectively solve the algebraic equationf (xi , t j ,Ui j ) = 0 at each mesh
node, where this occurs.
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FIG. 1. Computed solutions att = 2 vs. the exact solution (dashed curve) for various methods;ε = 10−2, N = 32, M = N2.
Left and centre: conventional method (1.3) fails to yield correct computed solutions on the uniform mesh (left), and even ifthe
Shishkin mesh (described in§4.1(b);γ = 1) is used in space combined with the uniform mesh in time (centre). Right: stabilized
method (1.4) withĈ = 2 on the uniform mesh yields a qualitatively correct computed solution.
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To stabilize the conventional method (1.3), we generalize it, for some constant̂C > 0, as follows:

T̂
hÛi j := [ε̂2

j δt − ε2 δ 2
x ]Ûi j + f (xi , t j ,Ûi j ) = 0, ε̂2

j = max{ε2,Ĉkj}. (1.4)

Here, as usual, we set̂Ui,0 = ϕ(xi) for i = 0, . . . ,N, andÛ0, j = g0(t j), ÛN, j = g1(t j) for j = 1, . . . ,M.
Clearly, (1.3) is a particular case of (1.4) witĥC = 0. Compared to (1.3), in (1.4) we artificially
strengthen the time derivative term, replacingε2δt by ε̂2δt , which does not influence the consistency or-
der of the method, but under an appropriate choice ofĈ, always yields a unique computed solution; see
Proposition 1.2 below. Furthermore, Figures 1 and 3 illustrate that the instability that we have observed,
is indeed cured by switching to the stabilized method (1.4) in whichĈ is chosen using Proposition 1.2.

For uniqueness of solutions of the continuous problem (1.1)and discrete problems (1.3) and (1.4)
we have the following results.

PROPOSITION1.1 (UNIQUE CONTINUOUS SOLUTION) Problem (1.1) has at most one solution.

Proof. The proof imitates the argument in (Pao, 1992, Theorem 5.1) and we sketch it here for com-
pleteness. Suppose (1.1) has two solutionsu and ū on [0,1]× [0,T]. Then|u|, |ū| 6 K1 and therefore
fu > −K2 in [0,1]× [0,T]× [−K1,K1] for some positive constantsK1 andK2, which might depend onε
andT. Using the standard linearization technique and then the transformationz := (ū−u)e−tK2/ε2

, we

getε2[ ∂
∂ t −

∂ 2

∂x2 ]z+(K2+ p)z= 0 wherep= p(x, t) =
∫ 1

0 fu(x, t,u+s[ū−u])ds>−K2. Sincezvanishes
for x = 0,1 and fort = 0, by the maximum principle (Protter & Weinberger, 1999, Chapter 3), we have
z= 0 for all (x, t). Note that this argument relies onfu being continuous for allu∈ R (otherwise, we
refer the reader to a solution non-uniqueness example in (Pao, 1992,§1.6)). �

PROPOSITION1.2 (UNIQUE COMPUTED SOLUTION) Let Ûi j be a solution of (1.4) and let̂ε2
j > C∗k j

for someC∗ > 0. If fu > −C∗ for all x, t, u, thenÛ is a unique solution of (1.4). IfK1 6 Ûi j 6 K2 for
some constantsK1 andK2, and fu >−C∗ in [0,1]× [0,T]× [K1,K2], thenÛ is a unique solution of (1.4)
betweenK1 andK2.

Proof. We imitate the proof of (Pao, 1985, Theorem 3.1) (where the case ofε = ε̂ j = 1 was considered).
We present the proof here, in particular, to reveal the role of ε̂ j in the uniqueness condition̂ε2

j > C∗k j .

Let Ūi j be another solution of (1.4) and introduceZi j := (Ūi j −Ûi j )∏ j
l=1(1+kl µl/ε̂2

l )−1. A calculation

shows that̂ε2
j δtZi j + µ jZi j = (ε̂2

j + k j µ j)[δt(Ūi j −Ûi j )] ∏ j
l=1(1+ kl µl/ε̂2

l )−1. Therefore, applying the
standard linearization, we arrive at

ε̂2
j

1+k j µ j/ε̂2
j

δtZi j − ε2δ 2
x Zi j +

( µ j

1+k j µ j/ε̂2
j

+ pi j

)

Zi j = 0,

wherepi j :=
∫ 1

0 fu(xi , t j ,Ûi j +s[Ūi j −Ûi j ])ds>−C∗. As for some constant̃C∗ >C∗ we haveε̂2
j > C̃∗k j ,

then µ j/(1+ µ jk j ε̂−2
j ) > µ j/(1+ µ j/C̃∗) and choosingµ j sufficiently large, we can always make

µ j/(1+ µ j/C̃∗) sufficiently close toC̃∗, and therefore, exceedingC∗. Now pi j > 0 and, recalling that
Zi j = 0 for xi = 0,1 andt j = 0, by the discrete maximum principle, we getZi j = 0 for all i, j. �

REMARK 1.3 To apply Proposition 1.2 to the conventional method (1.3), we have to impose a very
restrictive conditionk j < ε2/C∗ on the time stepk j , which would result in a very inefficient method. In
contrast, choosinĝC sufficiently large in (1.4), we can always ensure a unique computed solution.

The paper is organized as follows. The next§2 presents our assumptions on problem (1.1). In§3 we
discuss asymptotic properties of solutions of (1.1) and construct lower and upper solutions. In§4, layer-
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adapted meshes for solving (1.1) are described, and discrete analogues of the upper and lower solutions
are used to obtain tight upper and lower bounds on the computed solutions. Precise convergence results
for the numerical methods (1.3) and (1.4) are then derived onBakhvalov and Shishkin meshes. In§5,
numerical results illustrate the sharpness of our theoretical error estimates. Finally,§6 summarizes our
conclusions.

Note that an asymptotic analysis of a version of (1.1) with Neumann boundary conditions, which we
partly imitate in§3, was given in (Vasil’evaet al., 1995,§3.2.3). We also refer the reader to asymptotic
and numerical analyses for one- and two-dimensional steady-state versions of (1.1) by Fife (1973);
Nefedov (1995) and Sun & Stynes (1996); Kopteva & Stynes (2004); Kopteva (2007), respectively.

Notation. Throughout this paper we letC denote a generic positive constant that may take different
values in different formulas, but is always independent ofN, M and ε. A subscriptedC (e.g.,C1)
denotes a positive constant that is independent ofN, M andε and takes a fixed value. For any two
quantitiesw1 andw2, the notationw1 = O(w2) means|w1| 6 Cw2.

2. Assumptions on the continuous problem

We shall examine solutions of (1.1) that exhibit boundary and initial layers. (In general, solutions
of (1.1) may also have interior transition layers, which we will consider in a future paper.) As was
announced in the introduction, we drop the restrictive global assumption thatfu(x, t,u) > 0 for all
(x,u) ∈ [0,1]× [0,T]×R

1, and consider problem (1.1) under the following weaker assumptions.

• It has astable reduced solution, i.e. there exists a sufficiently smooth solutionu0 of (1.2) such
that

fu(x, t,u0(x, t)) > γ2 > 0 for all (x, t) ∈ [0,1]× [0,T]. (A1)

• The boundary conditions satisfy
∫ v

u0(l ,t)
f (l , t,s)ds> 0 for all v∈

(

u0(l , t),gl (t)
]′

, l = 0,1, t ∈ [0,T]. (A2)

Here the notation(a,b]′ is defined to be(a,b] whena < b and[b,a) whena > b, while (a,b]′ = /0
whena = b.

• The initial condition is in the domain of attraction of the reduced solutionu0, i.e. it satisfies

s f(x,0,u0(x,0)+s) > 0 for all s∈ (0,ϕ(x)−u0(x,0)]′, x∈ [0,1]. (A3)

Note that ifgl (t) ≈ u0(l , t) for l = 0 or l = 1, then (A2) follows from (A1) combined with (1.2), while
if gl (t) = u0(l , t) at some pointt ∈ [0,T], then (A2) does not impose any restriction ongl at this point.
Similarly, if ϕ(x) ≈ u0(x,0), then (A3) follows from (A1) combined with (1.2), whileϕ(x) = u0(x,0)
does not impose any restriction onϕ at this point.

Conditions (A1), (A2), (A3) intrinsically arise from the asymptotic analysis of problem (1.1) and
guarantee that there exists a unique solutionuof (1.1), which exhibits boundary layers of widthO(ε| lnε|)
at x = 0,1 and an initial layer of widthO(ε2| lnε|) at t = 0, while u≈ u0 in the interior subdomain of
(0,1)× (0,T] away fromx = 0,1 andt = 0; see Theorem 3.9 for a precise statement. We also refer the
reader to Kopteva & Stynes (2004) for a detailed discussion of (A1), (A2) in one dimension, and also to
Remark 3.4 on the role of assumption (A3).
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We make two further simplifying assumptions to facilitate our presentation. To avoid considering
cases, assume that

u0(l , t) 6 gl (t) for l = 0,1, t ∈ [0,T]; u0(x,0) 6 ϕ(x) for x∈ [0,1]. (2.1)

To ensure that problem (1.1) has sufficiently smooth solutions, we also impose thefirst-order com-
patibility conditionsε2[g′l (0)−ϕ ′′(l)]+ f (l ,0,ϕ(l)) = 0 for l = 0,1, i.e. at the domain corners(0,0)
and(1,0). Dropping theO(ε2) terms, we getf (l ,0,ϕ(l)) = 0 for l = 0,1. Combining these with (A3),
we conclude that

ϕ(l) = gl (0) = u0(l ,0) for l = 0,1. (2.2)

Strictly speaking, the termsε2[g′l (0)−ϕ ′′(l)] = O(ε2) should remain, and therefore (2.2) should be
replaced by a more general relationϕ(l) = gl (0) = u0(l ,0) + O(ε2). We use (2.2) instead only to
simplify our presentation; all our further results apply tothis more general case too.

3. Asymptotic analysis, upper and lower solutions

We start this section by presenting a standard second-orderasymptotic expansion. Furthermore, we
shall modify it to construct certain upper and lower solutions that provide tight control on the solutions
of our problem (1.1).

We shall use the functions

F(x, t,s) := f (x, t,u0(x, t)+s), F̃(x, t,s; p) := f (x, t,u0(x, t)+s)− ps.

The perturbed versioñF of the functionF is used, with|p| sufficiently small, in the construction of upper
and lower solutions. In the constructions that follow, a tilde will always denote a perturbed function.
The perturbed functions always depend on the parameterp, but we will sometimes not show the explicit
dependence. Thus, we will sometimes writeF̃(x, t,s) for F̃(x, t,s; p). Note thatF̃(x, t,0) = 0 implies
F̃x(x, t,0) = 0, F̃xx(x, t,0) = 0 andF̃t(x, t,0) = 0, and therefore we have

|F̃x(x, t,s)| 6 C|s|, |F̃xx(x, t,s)| 6 C|s|, |F̃t(x, t,s)| 6 C|s|. (3.1)

We will occasionally use, for any functiong, the notations

g
∣

∣

b
a = g(b)−g(a), g

∣

∣

c
a;b = g(c)−g(b)−g(a). (3.2)

Sinceg(a+b)−g(a)−g(b)+g(0)= abg′′(θ), we see thatg(0) = 0 impliesg
∣

∣

a+b
a;b = O(|ab|). Therefore,

under this notation,̃F(x, t,0) = 0 implies that

F̃(x, t, ·)
∣

∣

∣

a+b

a;b
= O(|ab|). (3.3)

Under our assumptions (A1)-(A3), the solution of problem (1.1) exhibits boundary layers nearx= 0
and x = 1, and an initial layer neart = 0. Since the construction of the layer terms at each of the
boundary points is carried out independently of the layer terms at the other boundary point, without loss
of generality, we assume throughout this section that

u0(1, t) = g1(t) for t ∈ [0,T], (3.4)

which implies that there is no boundary layer atx = 1. To describe the boundary layer atx = 0 and the
initial layer att = 0, we shall employ the stretched variablesξ := x/ε andτ := t/ε2.
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3.1 Solution near the boundary x= 0, boundary-layer functions

In this subsection we construct boundary layer functions associated with the boundaryx = 0; they use
the stretched variableξ = x/ε. Let v0(ξ , t) := ṽ0(ξ , t;0), and the functions ˜v0(ξ , t; p) andv1(ξ , t) be
solutions of the equations

−∂ 2ṽ0

∂ξ 2 + F̃(0, t, ṽ0; p) = 0, (3.5a)

−∂ 2v1

∂ξ 2 +v1Fs(0, t,v0) = −ξ Fx
(

0, t,v0
)

, (3.5b)

whereξ > 0, subject to the boundary conditions

ṽ0(0, t; p) = g0(t)−u0(0, t), v1(0, t) = 0, ṽ0(∞, t; p) = v1(∞, t) = 0. (3.5c)

Note that the equation for ˜v0 is a nonlinear autonomous ordinary differential equation,while the equation
for v1 is a linear ordinary differential equation; in these equations,t andp appear as parameters. Note
also thatv1 is not a perturbed function as it does not depend onp. Our conditions (A1), (A2) are precisely
what is needed to ensure existence and asymptotic properties of ṽ0 andv1. To be more specific, for the
solvability and properties of the two problems described by(3.5) we have the following result.

LEMMA 3.1 Setγ2
L = min

t>0
fu(0, t,u0(0, t)) > γ2, whereγ > 0 is from (A1). Then there isp0 ∈ (0,γ2

L)

such that for all|p|6 p0 there exist functions ˜v0(ξ , t; p), v0(ξ , t) andv1(ξ , t) which satisfy (3.5). For ˜v0

andv0 we have

v0 > 0, |v0 + εv1| 6 Ct,
∂ ṽ0

∂p
> 0, for all ξ , t > 0. (3.6)

Furthermore, for any arbitrarily small but fixedδ ∈ (0,γL −
√

p0), there is a constantCδ such that

∣

∣

∣

∂ kṽ0

∂ξ k

∣

∣

∣
+

∣

∣

∣

∂ kv1

∂ξ k

∣

∣

∣
+

∣

∣

∣

∂ l ṽ0

∂ t l

∣

∣

∣
+

∣

∣

∣

∂ l v1

∂ t l

∣

∣

∣
+

∣

∣

∣

∂ ṽ0

∂p

∣

∣

∣
6 Cδ e−(γL−

√
p0−δ )ξ (3.7)

for ξ , t > 0 andk = 0, . . . ,4, l = 0,1,2.

Proof. The existence and most of the properties ofv0 and ṽ0 follow from (Kopteva & Stynes, 2004,
Lemma 2.3). Forv1, we use a result presented in (Fife, 1973, Lemma 2.2) and (Vasil’eva et al., 1995,
§2.3.1). In particular, to obtain estimates (3.7), one observes that the derivatives of ˜v0 andv1 with respect
to ξ andt, as well as∂ ṽ0/∂p, all satisfy linear differential equations with the same differential operator,
similar to the one in the equation (3.5b).

We especially elaborate on the proof of|v0 + εv1| 6 Ct as its analogues do not appear in the three
cited publications. Recall the corner compatibility condition g0(0)− u0(0,0) = 0 from (2.2), which
implies |g0(t)−u0(0, t)| 6 Ct. Combining this with|v0(ξ , t)|+ |v1(ξ , t)| 6 C|v0(0, t)| (which follows
from the cited analyses ofv0 andv1) andv0(0, t) = g0(t)−u0(0, t), yields the desired estimate. �

For later purposes we shall now obtain two estimates that involve ṽ0, v0 andv1. The first estimate is
concerned with the correctionv0 + εv1 to the reduced solutionu0 nearx = 0. We claim that

ε2[ ∂
∂ t −

∂ 2

∂x2

]

(v0 + εv1)+F(x, t,v0 + εv1) = O(ε2). (3.8)

This immediately implies thatT(u0 + v0 + εv1) = O(ε2). Noting that(u0 + v0 + εv1)
∣

∣

x=0 = g0(t) and
thatv0 + εv1 is decaying asξ → ∞, we now expect thatu0 +v0 + εv1 approximates a solutionu of our
problem (1.1) near the boundaryx = 0.
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Estimate (3.8) is standard in the asymptotic analysis. It isobtained fromε2
[ ∂

∂ t −
∂ 2

∂x2

]

(v0 + εv1) =

− ∂ 2

∂ξ 2 (v0 + εv1)+O(ε2) combined with (3.5a) and (3.5b), which yield

∂ 2

∂ξ 2 (v0 + εv1) = F(0, t,v0)+ εξ Fx(0, t,v0)+ εv1Fs(0, t,v0) = F(εξ , t,v0 + εv1)+O(ε2).

Here we also used a Taylor series expansion ofF(εξ , t,v0+εv1) in ε, in which the quadratic remainder
terms were estimated using|Fxx| 6 C|v0 + εv1| (which follows from (3.1)),|Fss|+ |Fxs| 6 C, and then
(ξ 2 +1)(|v0|+ |v1|) 6 C (which follows from (3.7)). Thus (3.8) is established.

Our second auxiliary estimate is for ˜v0−v0:

ε2[ ∂
∂ t −

∂ 2

∂x2 ](ṽ0−v0) = −F(x, t, ·)
∣

∣

∣

ṽ0+εv1

v0+εv1
+pv0 +O(ε2 + p2). (3.9)

It follows from ε2
[ ∂

∂ t −
∂ 2

∂x2

]

(ṽ0−v0) = − ∂ 2

∂ξ 2 (ṽ0−v0)+O(ε2) combined with (3.5a), which implies

∂ 2

∂ξ 2 (ṽ0−v0) = F(0, t, ·)
∣

∣

∣

ṽ0

v0
+pṽ0 = F(x, t, ·)

∣

∣

∣

ṽ0+εv1

v0+εv1
−xFx(x̂, t, ·)

∣

∣

∣

ṽ0+ε ŝ

v0+ε ŝ
−εv1Fs(x̂, t, ·)

∣

∣

∣

ṽ0+ε ŝ

v0+ε ŝ
+pṽ0.

Recalling thatx = εξ and noting that, by the estimate for∂ ṽ0
∂p in (3.7), we have(1+ξ )|ṽ0−v0| = O(p),

yields (3.9).

3.2 Solution near t= 0, initial-layer functions

In this subsection we construct initial-layer functions todescribe the solution neart = 0; they use the
stretched variableτ = t/ε2. Let w0(x,τ) := w̃0(x,τ;0), and the function ˜w0(x,τ; p) be a solution of the
initial-value problem

∂ w̃0

∂τ
= −F̃(x,0, w̃0; p) for τ > 0, w̃0(x,0;p) = ϕ(x)−u0(x,0). (3.10a)

Sincew0 andw̃0 describe a correction tou0(x, t) for small values oft, we look for a solution of (3.10a)
that satisfies an additional condition

w̃0(x,∞; p) = 0. (3.10b)

Herex∈ [0,1] andp appear as parameters.
For each fixedx andp, problem (3.10) is a particular case of the auxiliary initial value problem

d
dτ ω = −φ(ω) for τ > 0, ω(0) = ω0 > 0, ω(∞) = 0, (3.11)

for which we have the following result

LEMMA 3.2 Let a sufficiently smooth functionφ satisfy

φ(0) = 0, φ ′(0) > 0, φ(s) > 0 for all s∈ (0,ω0]. (3.12)

(i) Then problem (3.11) has a solution 06 ω 6 ω0, and for any arbitrarily small but fixedδ ∈ (0,φ ′(0)),
there is a constantCδ such that

|ω|+ |ω ′|+ |ω ′′| 6 ω0Cδ e−[φ ′(0)−δ ]τ for τ > 0. (3.13)
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(ii) Set ω̂ := ω/ω0 if ω0 > 0, or ω̂ := e−φ ′(0)τ if ω0 = 0. Then the related linear problem

d
dτ χ + χφ ′(ω) = ψ(τ) for τ > 0, χ(0) = χ0, χ(∞) = 0, (3.14)

where|ψ(τ)|6C(1+τm)ω̂(τ) for somem> 0, has a solution such that|χ(τ)|6C(χ0+1+τm+1)ω̂(τ).
If we also haveχ0 = 0 andψ > 0, thenχ > 0 for all τ > 0.

Proof. (i) If ω0 = 0, thenω(τ) = 0 for all τ and the assertion follows. Otherwise, ifω0 > 0, consider
the phase plane(ω,ω ′) for the equationω ′ = −φ(ω). By (3.12), there is a trajectory that leaves the
point (ω0,−φ(ω0)) and enters the point(0,0), which is a fixed point for this equation. Furthermore,
sinceφ(ω) > 0 for all ω ∈ (0,ω0], this entire trajectory will lie in the quarter plane{ω > 0, ω ′ < 0};
therefore the corresponding solutionω(τ) is positive and decreasing to 0. It remains to show that the
solution trajectory enters(0,0) asτ → ∞, and also the exponential decay estimates (3.13). Note thatfor
anyδ ∈ (0,φ ′(0)), there existssδ ∈ (0,ω0) such that[φ ′(0)−δ ]s6 φ(s) 6 [φ ′(0)+δ ]s for all s∈ [0,sδ ].
Furthermore, there existsτδ > 0 such thatω(τδ )= sδ (otherwise, ifω(τ)> sδ for all τ, thenω ′(τ)6−C
for some positive constantC, which yields a contradictionω(∞) =−∞ with (3.11)). Thus for allτ > τδ
we have[φ ′(0)−δ ]ω 6 ω ′ 6 [φ ′(0)+δ ]ω, which implies thate−[φ ′(0)+δ ]τ 6 ω(τ)/ω(τδ ) 6 e−[φ ′(0)−δ ]τ

for τ > τδ . The estimates forω andω ′ in (3.13) follow immediately asω(τδ ) < ω0. Finally, the estimate
for ω ′′ in (3.13) is obtained noting thatω ′′ = −ω ′φ ′(ω).
(ii) To solve (3.14), note that the corresponding homogeneous equationd

dτ θ +θφ ′(ω) = 0 has a positive
solutionθ such thatθ(0) = 1. If ω0 > 0, then we recall from part (i) thatω ′ < 0 andC−1 6 |ω ′|/ω 6 C
and thus chooseθ := ω ′/ω ′(0) > 0 so thatC−1 6 θ/ω̂ 6 C; otherwise, ifω0 = 0 and thusω = 0, then,
by (3.12), we haveφ ′(ω) = φ ′(0) > 0 and so chooseθ(τ) := e−φ ′(0)τ = ω̂ . Now, the unique solution
of (3.14) is given by

χ(τ) = χ0 θ(τ)+θ(τ)
∫ τ

0

ψ(τ ′)
θ(τ ′)

dτ ′,

where|ψ(τ)| 6 C(1+ τm)θ(τ). The desired assertions follow. �

We now apply Lemma 3.2 to problem (3.10) as follows.

LEMMA 3.3 Setγ2
0 := min

x∈[0,1]
fu(x,0,u0(x,0)) > γ2, whereγ > 0 is from (A1). Then there isp0 ∈ (0,γ2

0)

such that for all|p| 6 p0, problem (3.10) has a solution ˜w0(x,τ; p). For w̃0 andw0 we have

0 6 w0 6 Cx,
∂ w̃0

∂p
> 0, for all x∈ [0,1], τ > 0. (3.15)

Furthermore, for any arbitrarily small but fixedδ ∈ (0,γ2
0 − p0), there is a constantCδ such that

∣

∣

∣

∂ l w̃0

∂τ l

∣

∣

∣
+

∣

∣

∣

∂ kw̃0

∂xk

∣

∣

∣
+

∣

∣

∣

∂ w̃0

∂p

∣

∣

∣
6 Cδ e−(γ2

0−p0−δ )τ . (3.16)

for x∈ [0,1], τ > 0 andk = 0, . . . ,4, l = 0,1,2.

Proof. For each fixedx and p, problem (3.10) is a particular case of the auxiliary problem (3.11)
with a solutionω := w̃0, the initial conditionω0 := ϕ(x)− u0(x,0), and the right-hand side function
φ(s) := F̃(x,0,s; p) = f (x,0,u0(x,0) + s)− ps, for which we haveφ ′(s) = fu(x,0,u0(x,0) + s)− p.
Note that (A1) implies thatφ(0) = 0 andφ ′(0) > γ2

0 −|p| > 0, while (A3) combined with (2.1) yields
φ(s) > 0 for all s∈ (0,ω0] provided thatp0 is chosen sufficiently small. Thus the hypotheses (3.12) of
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Lemma 3.2 are satisfied. Now Lemma 3.2(i) implies existence of a solution 06 w̃0 6 ϕ(x)−u0(x,0)

and the estimates for∂
l

∂τ l w̃0, wherel = 0,1,2, in (3.16). Next, the bound 06 w0 6 Cx in (3.15) is

obtained fromw0 = w̃0
∣

∣

p=0 and 06 w̃0 6 ϕ(x)−u0(x,0), noting that the corner compatibility condition
ϕ(0)−u0(0,0) = 0 from (2.2) impliesϕ(x)−u0(x,0) 6 Cx.

It remains now to estimate the functions∂
∂ pw̃0 and ∂ k

∂xk w̃0 for k = 1, . . . ,4. Differentiating the equa-
tion in (3.10a) with respect top, or k times with respect tox, we see that these functions are solutions
of the initial value problem (3.14) withφ ′(ω) = φ ′(w̃0) = F̃s(x,0, w̃0) and various right-hand sides and
initial data. In particular, we haveψ := w̃0 andχ0 := 0 for χ = ∂

∂ pw̃0, which, by Lemma 3.2(ii), im-

plies that ∂
∂ pw̃0 > 0 and the estimate for this function in (3.16). Furthermore,for χ = ∂

∂xw̃0 we use

ψ := −F̃x(x,0, w̃0) (for which we have|ψ| 6 Cw̃0, by (3.1)) andχ0 := ϕ ′(x)−u0,x(x,0); now the esti-
mate for ∂

∂xw̃0 in (3.16) is obtained by again applying Lemma 3.2(ii). The remaining bounds in (3.16)

are obtained similarly, by evaluating the functionsψ andχ0 corresponding toχ = ∂ k

∂xk w̃0 with k > 1,
and then applying Lemma 3.2(ii). �

For later purposes we shall now obtain two estimates that involve w̃0 andw0. The first estimate is
concerned with the correctionw0 to the reduced solutionu0 neart = 0. We claim that

ε2[ ∂
∂ t −

∂ 2

∂x2

]

w0 +F(x, t,w0) = O(ε2). (3.17)

This immediately implies thatT(u0 + w0) = O(ε2). Noting that(u0 + w0)
∣

∣

t=0 = ϕ(x) and thatw0 is
decaying asτ → ∞, we expect thatu0 +w0 approximates a solutionu of our problem (1.1) neart = 0.

Estimate (3.17) is standard in asymptotic analysis. It is obtained noting thatε2
[ ∂

∂ t −
∂ 2

∂x2

]

w0 =
∂

∂τ w0 + O(ε2) and then recalling (3.10a), which yields∂∂τ w0 = −F(x,0,w0) = −F(x, t,w0) + O(ε2).
Here we also used a Taylor series expansion ofF(x, t,w0) in t, in which the linear remainder term
tFt(x, t̂,w0) was estimated combiningt = ε2τ with |Ft | 6 Cw0 (which follows from (3.1)) and then
invoking (3.16). Thus (3.17) is established.

Our second auxiliary estimate is for ˜w0−w0 :

ε2[ ∂
∂ t −

∂ 2

∂x2 ](w̃0−w0) = −F(x, t, ·)
∣

∣

∣

w̃0

w0
+pw0 +O(ε2 + p2). (3.18)

It follows from ε2
[ ∂

∂ t −
∂ 2

∂x2

]

(w̃0−w0) = ∂
∂τ (w̃0−w0)+O(ε2) combined with (3.10a), which implies

∂
∂ t (w̃0−w0) = −F(x,0, ·)

∣

∣

∣

w̃0

w0
+ pw̃0 = −F(x, t, ·)

∣

∣

∣

w̃0

w0
+ tFt(x, t̂, ·)

∣

∣

∣

w̃0

w0
+ pw̃0.

Recalling thatt = ε2τ and noting that, by the bound for∂ w̃0
∂ p in (3.16), we have(1+τ)|w̃0−w0|= O(p),

yields (3.18).

REMARK 3.4 Assumption (A3) is necessary for existence of the initial-layer functionsw0 andw̃0, which
are solutions of problem (3.10). This follows from (3.10) being a particular case of problem (3.11), as
an extension of the phase plane analysis used in the proof of Lemma 3.2, shows that, if|φ ′(s)| 6 C for
all s∈ [0,ω0], then our conditions (3.12), withφ ′(0) > 0 relaxed toφ ′(0) > 0, are necessary for problem
(3.11) having a solution.
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3.3 First-order asymptotic expansion

In the previous subsections we have defined the boundary-layer functionsv0 and v1 and the initial-
layer functionw0. In this subsection, these functions and the reduced solution u0 are assembled in the
following first-order asymptotic expansion for our problem(1.1):

uas(x, t) := u0(x, t)+ [v0(ξ , t)+ εv1(ξ , t) ]+w0(x,τ). (3.19)

Note that no corner functions are needed in the above asymptotic expansion due to the compatibility
conditions (2.2). Indeed, examining problems (3.5) forv0 andv1, in view of (2.2) with l = 0, yields
v0(ξ ,0) = v1(ξ ,0) = 0 for all ξ > 0; similarly, examining problem (3.10) forw0 in view of (2.2), yields
w0(0,τ) = w0(1,τ) = 0 for all τ > 0. Therefore, we get

uas(x,0) = ϕ(x), uas(0, t) = g0(t), uas(1, t) = g1(t)+O(ε2), (3.20)

or in other words,uas(x,0) = u(x,0) and |uas(l , t)− u(l , t)| = O(ε2) at the boundary pointsl = 0, 1.
It should be noted that the last relation in (3.20) follows from uas(1, t) = u0(1, t) + (v0 + εv1)

∣

∣

ξ=1/ε
combined with our assumption (3.4) and the estimate|v0 + εv1| 6 Cδ e−(γL−δ )/ε 6 Cε2 for ξ = 1/ε, for
which we invoked (3.7).

Furthermore, we have the following standard result forTuas.

LEMMA 3.5 The asymptotic expansionuas from (3.19) satisfiesTuas= O(ε2).

Proof. First we combineε2
[ ∂

∂ t −
∂ 2

∂x2

]

u0 = O(ε2) with (3.8) and (3.17) and, using notation (3.2), get

Tuas= ε2[ ∂
∂ t −

∂ 2

∂x2

]

uas+F(x, t,v0 + εv1 +w0) = F(x, t, ·)
∣

∣

∣

(v0+εv1)+w0

v0+εv1; w0
+O(ε2).

By (3.3), this yields

|Tuas| 6 C|(v0 + εv1)w0|+O(ε2) 6 Ct e−(γ2
0−δ )τ +O(ε2) 6 Cε2.

Here we estimated|v0 + εv1| using (3.6) andw0 using (3.16), and also invokedt = ε2τ. �

3.4 Modified asymptotic expansion, existence of a solution between upper and lower solutions

In this section we construct upper and lower solutions, and therefore, prove an existence of a solution
in anO(ε2) neighbourhood of our asymptotic expansion. The upper and lower solutions are obtained
by perturbing our asymptotic expansion (3.19), in which we replace the boundary- and initial-layer
functionsv0 andw0 by their perturbed versions ˜v0 andw̃0, and then add the termC0p, as follows:

β (x, t; p) := u0(x, t)+ [ ṽ0(ξ , t; p)+ εv1(ξ , t) ]+ w̃0(x,τ; p)+C0p. (3.21)

Occasionally we shall use an alternative equivalent representation

β (x, t; p) = uas+V +W+C0p, where V := ṽ0−v0, W := w̃0−w0. (3.22)

Note that forV andW here, by the estimates for∂∂ p ṽ0 and ∂
∂ pw̃0 in (3.7) and (3.16), we get

(1+ξ )|V| 6 Cp, (1+ τ)|W| 6 Cp. (3.23)
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LEMMA 3.6 For the functionβ (x, t; p) of (3.21) we haveβ = uas+O(p). Furthermore, ifp > 0, then

β (x, t;−p) 6 uas−C0p 6 uas+C0p 6 β (x, t; p) for all (x, t) ∈ [0,1]× [0,T]. (3.24)

Proof. The first assertion immediately follows from (3.22) and (3.23). Noting thatuas(x, t) = β (x, t;0)
and then recalling the bounds∂ ṽ0/∂p > 0 and∂ w̃0/∂p > 0 from (3.6) and (3.15), yields the second
assertion (3.24). �

Furthermore, forTβ we get the following result.

LEMMA 3.7 For all(x, t) ∈ (0,1)× (0,T] we have

Tβ = C0p fu(x, t,u0)+ p[1+C0λ ](v0 +w0)+O(ε2 + p2),

whereλ = λ (x, t) := fuu(x, t,u0 +ϑ [v0 +w0]) for someϑ = ϑ(x, t) ∈ (0,1).

Proof. By Lemma 3.5, we haveTuas= O(ε2). Thus it suffices to investigateTβ −Tuas, for which, by
(3.22), we have

Tβ −Tuas= ε2[ ∂
∂ t −

∂ 2

∂x2

]

(V +W)+ f (x, t, ·)
∣

∣

∣

β

uas
. (3.25)

Now, recalling (3.9) and (3.18) yields

ε2[ ∂
∂ t −

∂ 2

∂x2 ](V +W) = −F(x, t, ·)
∣

∣

∣

ṽ0+εv1

v0+εv1
−F(x, t, ·)

∣

∣

∣

w̃0

w0
+p[v0 +w0]+O(ε2 + p2),

and therefore, using Taylor series expansions combined with V2 +W2 6 Cp2 (see (3.23)), we get

ε2[ ∂
∂ t −

∂ 2

∂x2 ](V +W) = −VFs(x, t,v0 + εv1)−WFs(x, t,w0)+ p(v0 +w0)+O(ε2 + p2). (3.26)

Similarly, we obtain

f (x, t, ·)
∣

∣

∣

uas+V+W

uas
= F(x, t, ·)

∣

∣

∣

v0+εv1+w0+V+W

v0+εv1+w0
= [V +W]Fs(x, t,v0 + εv1 +w0)+O(p2)

= VFs(x, t,v0 + εv1)+WFs(x, t,w0)+O(|Vw0|+ |W(v0 + εv1)|+ p2). (3.27)

Next, note that invokingεv1 +(V +W) = O(ε + p), we get

f (x, t, ·)
∣

∣

∣

β

uas+V+W
= f (x, t, ·)

∣

∣

∣

uas+V+W+C0p

uas+V+W
= C0p[ fu(x, t,u0 +v0 +w0)+O(ε + p)]

= C0p[ fu(x, t,u0)+λ (v0 +w0)]+O(ε2 + p2), (3.28)

whereλ = λ (x, t) := fuu(x, t,u0 +ϑ [v0 +w0]) for someϑ = ϑ(x, t) ∈ (0,1).
Combining relations (3.25), (3.26), (3.27), (3.28) withTuas= O(ε2), we arrive at

Tβ = C0p fu(x, t,u0)+ p[1+C0λ ](v0 +w0)+O(|Vw0|+ |W(v0 + εv1)|)+O(ε2 + p2).

The desired assertion follows by invoking|Vw0|+ |W(v0 + εv1)| 6 C(x|V|+ t|W|) = O(ε p). Here we
estimated|w0| and |v0 + εv1| using (3.15) and (3.6), and then recalledx = εξ andτ = ε2τ combined
with ξ |V| 6 Cpandτ|W| 6 Cp from (3.23). �
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COROLLARY 3.8 There areC0 > 0 andC1 > 0 such that for all|p| 6 p0 we have

Tβ > C0pγ2−C1(ε2 + p2), if p > 0,
Tβ 6 −C0|p|γ2 +C1(ε2 + p2), if p < 0.

Proof. Recall (A1) and the estimatesv0 > 0,w0 > 0 from (3.6), (3.15). Now choose 0<C0 6 |λ (x, t)|−1

for all x andt so that 1+C0λ > 0. �

Now we are ready to establish existence of a unique solution of (1.1) that lies in anO(ε2) neigh-
bourhood of our asymptotic expansion.

THEOREM3.9 There is a sufficiently smallε0 > 0 such that for allε 6 ε0, there exists a unique solution
u of problem (1.1). Furthermore, for this solution we have|u(x, t)− uas(x, t)| 6 Cε2 for all (x, t) ∈
[0,1]× [0,T].

Proof. Set p̄ = C2ε2, whereC2 > 2C1/(C0γ2) so thatC0 p̄γ2 > 2C1ε2. Then, by Corollary 3.8, for
ε 6 1/C2 we getp̄ 6 ε soC1(ε2 + p2) 6 2C1ε2 and therefore

Tβ (x, t;−p̄) 6 0 6 Tβ (x, t; p̄). (3.29a)

Furthermore, in view of (3.24), choosingC2 sufficiently large so thatC0 p̄ = C0C2ε2 dominates the term
O(ε2) in (3.20), yields

β (x,0;−p̄) 6 ϕ(x) 6 β (x,0; p̄), β (l , t;−p̄) 6 gl (t) 6 β (l , t; p̄) for l = 0, 1. (3.29b)

By (3.24), we also have
β (x, t;−p̄) 6 β (x, t; p̄). (3.29c)

Comparing (3.29) with (1.1), we see thatβ (x, t;−p̄) andβ (x, t; p̄) are ordered lower and upper solutions,
respectively, for problem (1.1) (sometimes they are calledordered sub- and super-solutions); see Pao
(1992). Now, applying (Pao, 1992, Theorem 5.1) yields existence of a solutionu betweenβ (x, t;−p̄)
andβ (x, t; p̄):

β (x, t;−p̄) 6 u(x, t) 6 β (x, t; p̄).

Furthermore, Proposition 1.1 implies that this is a unique solution. Since, by Lemma 3.6, we have
β (x, t;±p̄) = uas+O(p̄) = uas+O(ε2), then|u−uas| 6 Cε2. �

4. Analysis of the numerical method

In this section we investigate the numerical method (1.4); note that our results also apply to a more
conventional numerical method (1.3) as it is a particular case of (1.4) withĈ = 0.

We make a further simplifying assumption to facilitate our presentation. Throughout this section we
take

ε 6 C(N−1 +M−1/2). (4.1)

This is not a practical restriction, and from a theoretical viewpoint the analysis of a nonlinear problem
such as (1.1) would be very different ifε were not small. Furthermore, by invoking higher-order asymp-
totic expansions (compared to (3.19)), condition (4.1) canbe relaxed toε 6 C(N−δ + M−δ/2) for any
arbitrarily small but fixedδ ∈ (0,1].
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4.1 Layer-adapted meshes, truncation error

We shall consider discrete problems (1.3) and (1.4) on two popular layer-adapted meshes, which have
been shown to yield convergence of various numerical methods uniformly with respect to the the sin-
gular perturbation parameter(s). The meshes are presentedfor the general case when the solution of
problem (1.1) has boundary layers both atx= 0 andx= 1 and also an initial layer att = 0; see Figure 2.
For convenience, we nevertheless continue our analysis in this section under assumption (3.4).

4.1 (a) Bakhvalov meshfirst appeared in Bakhvalov (1969); we also refer the reader to Rooset al.
(2008). The mesh points(xi , t j) are defined asxi = x(i/N) andt j = t( j/M), where the mesh-generating
functionsx(·), t(·) ∈C[0,1] are given by

x(ξ ) =







2ε
γ ln 1

1−4ξ for ξ ∈ [0,θ ],
1
2 −d(1

2 −ξ ) for ξ ∈ (θ , 1
2],

1−x(1−ξ ) for ξ ∈ (1
2,1],

t(η) =

{

ε2

γ2 ln 1
1−2η for η ∈ [0,θ0],

T −d0(1−η) for η ∈ (θ0,1].

Hereθ = 1/4−C3ε and θ0 = 1/2−C4ε2 for some positive constantsC3 andC4; andd andd0 are
chosen so thatx(ξ ) andt(η) are continuous atξ = θ andη = θ0 respectively. These definitions ofx(ξ )
andt(η) are valid only forε 6 1

8 min{γ,2C−1
3 } andε2 6 1

2 min{γ2T,C−1
4 }, respectively, which is not

a practical restriction (otherwise, we setx(ξ ) = ξ and/ort(η) = Tη and get a uniform mesh in thex-
and/ort-direction). Note also that for a certain choice ofC3 andC4, one obtains the original Bakhvalov
mesh, for whichx(·), t(·) ∈C1[0,1].

4.1 (b) Shishkin mesh; see Shishkin (1992); Milleret al. (1996). This mesh is constructed as follows.
Let N/4 andM/2 be positive integers and set

σ := min{ 2ε
γ lnN, 1

4}, σ0 := min{ ε2

γ2 lnM, T
2 }. (4.2)

Now the piecewise uniform mesh{xi}N
i=0 is obtained by dividing the intervals[0,σ ], [σ ,1−σ ] and

[1−σ ,1] into N/4, N/2 andN/4 equidistant subintervals, respectively. Similarly the piecewise uni-
form mesh{t j}M

j=0 is obtained by dividing each of the intervals[0,σ0] and[σ0,T] into M/2 equidistant
subintervals. In practice, one usually hasσ � 1 andσ0 � 1, so thex-mesh is coarse on[σ ,1−σ ] and
fine otherwise, while thet-mesh is coarse on[σ0,T] and fine on[0,σ0].

For the truncation error̂Thβ −Tβ of T̂
h from (1.4) on these meshes we have the following estimate.

LEMMA 4.1 Let β (x, t) = β (x, t; p) be defined by (3.21), and let the mesh{(xi , t j)} be either the
Bakhvalov mesh of§4.1(a), or the Shishkin mesh of§4.1(b). Then for all|p| 6 p0, where p0 is a
sufficiently small constant, we have

|T̂hβ (xi , t j ; p)−Tβ (xi , t j ; p)| 6 C(N−2 ln2mN+M−1 lnmM),

wherem= 0 for the Bakhvalov mesh (a) andm= 1 for the Shishkin mesh (b).

Proof. Choosep0 in Lemmas 3.1 and 3.3 sufficiently small so thatγL −
√

p0 > γ andγ2
0 − p0 > γ2;

next, chooseδ in (3.7) and (3.16) sufficiently small so thatγL −
√

p0−δ > γ andγ2
0 − p0−δ > γ2.

Next, note that̂Thβ −Tβ = [ε̂2δt −ε2 ∂
∂ t ]w̃0−ε2[δ 2

x − ∂ 2

∂x2 ](ṽ0+εv0)+O(ε2). By (3.7), imitating the

arguments in (Kopteva & Stynes, 2004,§3.4), we getε2[δ 2
x − ∂ 2

∂x2 ](ṽ0+εv0) = O(N−2 ln2mN). Recalling
(4.1), we observe that to establish the desired estimate it now remains to show that

R1 := ε2[δt − ∂
∂ t ]w̃0 = O(M−1 lnmM), R2 := (ε̂2− ε2)δtw̃0 = O(M−1 lnmM). (4.3)
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Let M(l)
j := max(x,t)∈[0,1]×[t j−1,t j ] | ∂ l

∂ t l
w̃0|. Taylor series expansions yield|R1| 6 Cε2min{k jM

(2)
j ,M(1)

j };

similarly, we get|R2| 6 C(ε̂2
j − ε2)k−1

j M(0)
j . Note that, by (3.16), here we haveM(l)

j 6 Cε−2l e−γ2t j−1/ε2

as ∂ l

∂ t l
= ε−2l ∂ l

∂τ l . Therefore

|R1| 6 Cmin{ k j

ε2 ,1}e−γ2t j−1/ε2
, |R2| 6 Cmax{0,Ĉ− ε2k−1

j }e−γ2t j−1/ε2
. (4.4)

We shall show that (4.4) implies (4.3) for the Bakhvalov mesh(a) and the Shishkin mesh (b) separately.

(a) Case 1: j
M 6 θ0−C5M−1 for someC5 > 1. Then we havek j 6 M−1 t ′( j

M ) = M−1 ε2

γ2 [1
2 −

j
M ]

−1

ande−γ2t j−1/ε2
= [1−2( j−1)

M ], which imply

|R1| 6 CM−1 1−2( j−1)
M

1
2 −

j
M

= CM−12
(

1+
M−1

1
2 −

j
M

)

6 CM−1.

Here we used12−
j

M >C5M−1, which follows fromθ0− j
M >C5M−1. Furthermore, choosingC5 =C5(Ĉ)

sufficiently large, we obtain̂Ckj 6 ε2, which yieldsR2 = 0.

Case 2: j
M > θ0 −C5M−1 = 1

2 −C4ε2 −C5M−1. Now, a calculation shows thatt j−1 = t( j−1
M ) >

ε2

γ2 ln(1
2[C4ε2+(C5+1)M−1]−1) and thuse−γ2t j−1/ε2

6C(ε2+M−1). Combining this with min{ k j

ε2 ,1}6

Cε−2min{M−1,ε2} and the observation that̂C− ε2k−1
j > 0 implies ε2 6 CM−1, yields the bounds

|R1| 6 CM−1 and|R1| 6 CM−1, respectively.

(b) For j 6 M/2 we havek j = Cε2M−1 lnM, which impliesR1 6 CM−1 lnM andR2 = 0 (as in this

casek j 6 ε2/Ĉ for sufficiently largeM). Otherwise, forj > M/2, we gete−γ2t j−1/ε2
6 e−γ2σ0/ε2

= M−1

and thus|R1| 6 CM−1 and|R2| 6 CM−1. �

4.2 Existence and accuracy, discrete upper and lower solutions

To establish existence of solutions of semilinear discreteequations (1.3) and (1.4), we invoke the theory
of discrete upper and lower solutions outlined in the following result.

PROPOSITION4.2 Assume that on an arbitrary mesh{(xi , t j)} there exist discrete functionsα andβ
such thatαi j 6 βi j and

T̂
hαi j 6 0 6 T̂

hβi j , αi,0 6 ϕ(xi) 6 βi,0, α0, j 6 g0(t j) 6 β0, j , αN, j 6 g1(t j) 6 βN, j ,

wherei = 1, . . . ,N−1, j = 1, . . . ,M. Then problem (1.4) has a solution̂Ui j such thatαi j 6 Ûi j 6 βi j .

Proof. The desired result is obtained imitating the proof of (Pao, 1985, Theorem 3.1) (where the case
of ε̂ j = ε = 1 was considered). It is crucial in this argument that the discrete operator̂Th+CI satisfies
the discrete maximum principle, whereI is the identity operator andC is an arbitrarily large but fixed
positive constant. Alternatively, one can get the assertion of this proposition noting that the mapping
T

h : R
(N+1)+(M+1) → R

(N+1)+(M+1) is aZ-field; see Lorenz (1981); Kopteva & Stynes (2004). �

REMARK 4.3 The functionsα andβ of Proposition 4.2 are called ordered discrete lower and upper
solutions (or sub- and super-solutions) of the discrete problem (1.4).

Now we are prepared to state existence andε-uniform accuracy of our discrete solutions.
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FIG. 2. Solution of test problem (5.1) forε = 10−4 (left); a layer-adapted mesh withN = M = 16 (right).

THEOREM4.4 Let the mesh{(xi , t j)} be either the Bakhvalov mesh of§4.1(a), or the Shishkin mesh of
§4.1(b). Then forN andM sufficiently large, there exist solutionsUi j andÛi j of discrete problems (1.3)
and (1.4), respectively, such that for alli = 0, . . . ,N, j = 0, . . . ,M we have

|Ui j −u(xi , t j)| 6 C(N−2 ln2mN+M−1 lnmM),

|Ûi j −u(xi , t j)| 6 C(N−2 ln2mN+M−1 lnmM),

wherem= 0 for the Bakhvalov mesh (a) andm= 1 for the Shishkin mesh (b).

Proof. As problem (1.3) is a particular case of problem (1.4), it suffices to prove the desired as-
sertions only forÛi j . Set p̄ = C6(N−2 ln2mN + M−1 lnmM) and chooseC6 sufficiently large so that,
invoking Lemma 4.1, we get|T̂hβ −Tβ | 6 C0 p̄/2 for all |p| 6 p0. In particular, this estimate holds
for β (x, t;±p̄), as for sufficiently largeN andM we have ¯p 6 p0. Furthermore, in view of (4.1), for
sufficiently largeN andM, we enjoyC0 p̄γ2−C1(ε2 + p̄2) > C0 p̄/2. Now, invoking Corollary 3.8 with
p = ±p̄, we getTβ (x, t;−p̄) 6 −C0 p̄/2 andTβ (x, t; p̄) > C0 p̄/2. These bounds immediately imply
T̂

hβ (xi , t j ;−p̄) 6 0 andT̂
hβ (xi , t j ; p̄) > 0; thus we obtained a discrete analogue of estimate (3.29a) in

the proof of Theorem 3.9. Using (3.20) and (3.24), we now imitate the remaining part of this proof
and conclude thatβ (xi , t j ;−p̄) andβ (xi , t j ; p̄) are discrete lower and upper solutions. Furthermore, by
Lemma 3.6 and Theorem 3.9, we haveβ (xi , t j ;±p̄) = uas+O(p̄) = u+O(ε2 + p̄). Finally, by Proposi-
tion 4.2, there existŝUi j betweenβ (xi , t j ;−p̄) andβ (xi , t j ; p̄); thereforeÛi j = u(xi , t j)+O(ε2 + p̄), and
recalling assumption (4.1), we get the desired estimate forÛi j . �

5. Numerical results

Our model problem is (1.1) in the domain(x, t) ∈ [0,1]× [0,2] with

f (x, t,u) := (2−u)(u−u1)u(u−u2), where u1 := 1− 1
2 sin(πx

2 − t), u2 := −(x2 + 1
2). (5.1)

The corresponding reduced problem (1.2) has two stable solutionsu1 andu2 and two unstable solutions
0 and 2. We use the boundary conditionsg0(t) = 0.6e−t −0.5 andg1(t) = 0.2e−t −0.1, and the initial
conditionϕ(x) = 0.1. A calculation shows that the boundary conditions satisfy(A2) for bothu0 = u1
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FIG. 3. Uniform mesh: conventional method (1.3) fails to produce acorrect computed solution (left); stabilized method (1.4) with
Ĉ = 4 yields a qualitatively correct computed solution (right);ε = 10−4, N = 32, M = N2.

andu0 = u2. But (A3) is satisfied only for the stable reduced solutionu0 = u1 (in other words, our initial
condition is in the domain of attraction ofu1). Therefore, away fromx = 0, x = 1 andt = 0, the unique
solutionu≈ u1; see Figure 2 (left). As we havefu(x, t,u1) > 1.1, we useγ = 0.9 in our calculations.

To solve the discrete nonlinear problems (1.3) and (1.4) at each time level we used Newton’s method
with the initial guess equal to the computed solution at the previous time level. At least four iterations
were performed; then the stopping criterion was applied that both maxi |T̂hÛi j | and the difference be-
tween two successive iterants should not exceed the tolerance of 5·10−12.

First, we compare the numerical methods (1.3) and (1.4) applied to the test problem (5.1) on a
uniform mesh; see Figure 3. Similarly to Figure 1, we observethat the conventional method (1.3) fails
to produce a correct computed solution (left), while switching to the stabilized method (1.4) witĥC = 4
(chosen using Proposition 1.2), we get a qualitatively correct computed solution (right).

On the layer-adapted meshes of Bakhvalov and Shishkin type,both the numerical methods (1.3) and
(1.4) produce qualitatively and quantitatively correct computed solutions. To be more precise, we used
the Bakhvalov mesh of§4.1(a) withC3 = 2γ−1 andC4 = (γ2T)−1, and the Shishkin mesh of§4.1(b)
with lnN and lnM in (4.2) replaced by ln(N/4) and ln(M/2) (as Theorem 4.4 also applies to this version
of the Shishkin mesh); for both meshes we setγ = 0.9 andT = 2. Tables 1–4 show rates of convergence
and maximum nodal errors computed as described in (Kopteva &Stynes, 2004,§4) (for each pair ofN

Table 1. Conventional method (1.3) on the Bakhvalov mesh. Computational ratesr in (N−1)r (upper part) and maximum nodal
errors (lower part).

N ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8 max
ε

32 1.94 2.06 2.07 2.07 2.07 2.07 2.07 2.07 2.07
64 2.02 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01

128 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

32 8.02e-3 1.70e-2 1.72e-2 1.72e-2 1.72e-2 1.72e-2 1.72e-2 1.72e-2 1.72e-2
64 2.08e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3 4.09e-3

128 5.14e-4 1.01e-3 1.01e-3 1.02e-3 1.02e-3 1.02e-3 1.02e-3 1.02e-3 1.02e-3
256 1.28e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4 2.53e-4
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Table 2. Stabilized method (1.4) witĥC = 4 on the Bakhvalov mesh. Computational ratesr in (N−1)r (upper part) and maximum
nodal errors (lower part).

N ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8 max
ε

32 1.94 2.05 2.06 2.06 2.06 2.06 2.06 2.06 2.06
64 2.02 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99

128 2.00 2.05 2.00 2.00 2.00 2.00 2.00 2.00 2.00

32 7.98e-3 1.97e-2 2.00e-2 2.01e-2 2.01e-2 2.01e-2 2.01e-2 2.01e-2 2.01e-2
64 2.08e-3 4.76e-3 4.80e-3 4.81e-3 4.81e-3 4.81e-3 4.81e-3 4.81e-3 4.81e-3

128 5.14e-4 1.19e-3 1.21e-3 1.21e-3 1.21e-3 1.21e-3 1.21e-3 1.21e-3 1.21e-3
256 1.28e-4 2.88e-4 3.01e-4 3.02e-4 3.02e-4 3.02e-4 3.02e-4 3.02e-4 3.02e-4

Table 3. Conventional method (1.3) on the Shishkin mesh. Computational ratesr in (N−1 ln(N/4))r (upper part) and maximum
nodal errors (lower part).

N ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8 max
ε

32 3.34 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45
64 2.96 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04

128 2.71 2.00 2.01 2.01 2.01 2.01 2.01 2.01 2.00

32 9.37e-3 4.07e-2 4.07e-2 4.07e-2 4.07e-2 4.07e-2 4.07e-2 4.07e-2 4.07e-2
64 2.42e-3 1.51e-2 1.51e-2 1.51e-2 1.51e-2 1.51e-2 1.51e-2 1.51e-2 1.51e-2

128 6.03e-4 5.77e-3 5.77e-3 5.78e-3 5.78e-3 5.78e-3 5.78e-3 5.78e-3 5.78e-3
256 1.51e-4 2.07e-3 2.07e-3 2.07e-3 2.07e-3 2.07e-3 2.07e-3 2.07e-3 2.07e-3

Table 4. Stabilized method (1.4) witĥC = 4 on the Shishkin mesh. Computational ratesr in (N−1 ln(N/4))r (upper part) and
maximum nodal errors (lower part).

N ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8 max
ε

32 3.22 2.55 2.56 2.56 2.56 2.56 2.56 2.56 2.56
64 2.96 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03

128 2.71 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99

32 8.92e-3 4.13e-2 4.14e-2 4.14e-2 4.14e-2 4.14e-2 4.14e-2 4.14e-2 4.14e-2
64 2.42e-3 1.47e-2 1.47e-2 1.47e-2 1.47e-2 1.47e-2 1.47e-2 1.47e-2 1.47e-2

128 6.03e-4 5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3
256 1.51e-4 2.06e-3 2.05e-3 2.05e-3 2.05e-3 2.05e-3 2.05e-3 2.05e-3 2.06e-3

andM, a solution on an auxiliary mesh was used with 2N and 4M mesh intervals in the space and time
directions, respectively).

Examining Tables 1–4, we conclude that the errors stabilizeasε approaches 0 and, furthermore, the
convergence rates confirm the sharpness of the bounds of Theorem 4.4. Comparing the conventional
method (1.3) and the stabilized method (1.4), we observe that although the errors of the stabilized
method are slightly larger on the Bakhvalov mesh, on the considered layer-adapted meshes both the
methods enjoy quite similarε-uniform accuracy.
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6. Conclusions

We have shown that the conventional implicit method (1.3) might produce incorrect and unstable com-
puted solutions on uniform meshes; see Figures 1 and 3. Therefore we propose a stabilized method
(1.4), which involves a constant parameterĈ > 0. For this method, Proposition 1.2 prescribes a choice
of Ĉ that ensures uniqueness of the computed solution. Furthermore, our numerical results suggest that
under this choice of̂C, switching to the stabilized method cures the instability and yields qualitatively
correct computed solutions on any mesh.

We theoretically investigated these two methods on layer-adapted meshes of Bakhvalov and Shishkin
types and established their second-order convergence (with, in the case of the Shishkin mesh, a logarith-
mic factor) in the discrete maximum norm, uniformly inε for ε 6 C(N−1 +M−1/2); see Theorem 4.4.

Although both the considered methods yield accurate computed solutions on layer-adapted meshes,
we note that the conventional method (1.3) is unstable on certain meshes, which might be unacceptable,
e.g., if a layer-adapted mesh is constructed adaptively, starting from an unsophisticated initial mesh.
Therefore we advocate the stabilized method (1.4) over the conventional method (1.3).
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