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Abstract A two-point boundary value problem is considered on the interval [0, 1],

where the leading term in the differential operator is a Riemann-Liouville fractional

derivative of order 2 − δ with 0 < δ < 1. It is shown that any solution of such a

problem can be expressed in terms of solutions to two associated weakly singular

Volterra integral equations of the second kind. As a consequence, existence and

uniqueness of a solution to the boundary value problem are proved, the structure

of this solution is elucidated, and sharp bounds on its derivatives (in terms of

the parameter δ) are derived. These results show that in general the first-order
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derivative of the solution will blow up at x = 0, so accurate numerical solution of

this class of problems is not straightforward. The reformulation of the boundary

problem in terms of Volterra integral equations enables the construction of two

distinct numerical methods for its solution, both based on piecewise-polynomial

collocation. Convergence rates for these methods are proved and numerical results

are presented to demonstrate their performance.

Keywords Fractional differential equation · Riemann-Liouville fractional

derivative · boundary value problem · weakly singular Volterra integral equation ·

collocation method
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1 Introduction

At present there is much active research into the design and analysis of numerical

methods for differential equations containing fractional-order derivative because

these derivatives are useful in modelling certain physical processes; see the discus-

sion and references in [5]. In particular, numerical methods for two-point bound-

ary value problems involving Riemann-Liouville derivatives have been examined in

many papers. Despite this high level of activity, existence/uniqueness/regularity

results for this class of problems have been confined to problems where the differ-

ential operator does not include a convective term (see [4,5] and their references).

To analyse rigorously the convergence of any numerical method for Riemann-

Liouville fractional-derivative boundary value problems, one needs information

about the existence, uniqueness and regularity of the solution. The pointwise reg-

ularity of solutions to Riemann-Liouville boundary value problems that include a
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convective term is still an open question, and as a consequence there are currently

no rigorous convergence results for finite difference or collocation methods for this

class of problems.

In the present paper we make two contributions to filling this gap in the liter-

ature. We prove existence, uniqueness and regularity (in a pointwise sense) for a

class of Riemann-Liouville two-point boundary problems that permits convective

terms, and present two efficient collocation methods for their solution for which

we obtain rigorous error bounds.

The structure of the paper is as follows. Section 1 presents the fractional-

derivative two-point boundary value problem that we study. In Section 2 it is

shown that the solution of this problem is equivalent to the solution of a pair of

weakly singular Volterra integral equations of the second kind. This enables us

to prove existence and uniqueness of a solution to the original boundary value

problem. Then in Section 3 we construct and analyse two numerical methods for

solving the boundary value problem that are based on Volterra integral equation

reformulations of the problem.

Notation. Let N = {1, 2, . . . } denote the set of natural numbers. We use the

standard notation Ck(I) to denote the space of real-valued functions whose deriva-

tives up to order k are continuous on an interval I, and write C(I) for C0(I). For

each g ∈ C[0, 1], set ‖g‖ = maxx∈[0,1] |g(x)|. The Lebesgue space L1[0, 1] is used

occasionally.

In several inequalities C denotes a generic constant that depends on the data

of the boundary value problem (3) and possibly on the mesh grading but is in-

dependent of the mesh diameter when (3) is solved numerically; note that C can

take different values in different places.
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1.1 Basic definitions

For n = 1, 2, . . . we denote by An[0, 1] the set of functions g ∈ Cn−1[0, 1] with

g(n−1) absolutely continuous on [0,1], i.e., g(n) exists almost everywhere in [0,1]

and

g(n−1)(x) = g(n−1)(0) +

∫ x

t=0

g(n)(t) dt for 0 ≤ x ≤ 1.

Clearly Cn[0, 1] ⊂ An[0, 1].

Let µ > 0. For all g ∈ L1[0, 1], as in [3] define the Riemann-Liouville fractional

integral operator of order µ by

(Jµg)(x) =
1

Γ (µ)

∫ x

t=0

(x− t)µ−1g(t) dt for 0 ≤ x ≤ 1. (1)

We shall make frequent use of the property [3, Theorem 2.2] Jµ1+µ2g = Jµ1Jµ2g

for all µ1, µ2 ≥ 0 and g ∈ L1[0, 1].

Let m be a positive integer. Let δ ∈ (0, 1). For any suitable function g, the

Riemann-Liouville fractional derivative Dm−δ is defined [3, Definition 2.2] by

Dm−δg(x) =

(
d

dx

)m
(Jδg)(x) for 0 < x ≤ 1, (2)

If g ∈ Am[0, 1], then this derivative is well defined. Note that if one sets δ = 0

and m = 1, then the Riemann-Liouville derivative D1 ≡ D becomes the classical

differential operator d/dx.
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1.2 The boundary value problem

In this paper we consider the Riemann-Liouville two-point boundary value problem

Lu := −D2−δu+ (bu)′ + cu = f on (0, 1), (3a)

u(0) = 0, (3b)

αu(1) + βu′(1) = γ, (3c)

where 0 < δ < 1, b ∈ C[0, 1] ∩ C1(0, 1], c and f ∈ C[0, 1], and α, β, γ ∈ R are given

constants. In later sections further hypotheses will be placed on these functions

and constants as they are needed. A discussion of anomalous diffusion processes

in nature that motivate the study of this boundary value problem is given in [5,

Section 1.1].

The problem (3) is well-posed: in Theorem 2 we give necessary and sufficient

conditions for existence and uniqueness of a solution to (3), and in Theorem 3 we

give sufficient conditions on the data of (3) to guarantee existence and uniqueness

of that solution.

The choice of the homogeneous Dirichlet boundary condition u(0) = 0 in (3b)

is motivated by the following example and discussion.

Example 1 Consider −D2−δu = 1 on (0, 1), with the boundary conditions (3b).

The general solution of this differential equation is, by [3, Example 2.4],

u(x) = − x2−δ

Γ (1− δ)
+ c1x

1−δ + c2x
−δ

for some constants c1 and c2. The boundary condition u(0) = 0 forces c2 = 0. This

is desirable as c2 6= 0 would imply u /∈ C[0, 1], thereby making the problem much
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more difficult to analyse. Then the boundary condition at x = 1 will determine

the value of c1. In general one has c1 6= 0, so u ∈ C[0, 1]∩C1(0, 1] but u /∈ C1[0, 1].

In fact u′(x) blows up at x = 0. One has u ∈ A1[0, 1] but u /∈ A2[0, 1].

Furthermore, in our analysis we shall consider only solutions u for which

D1−δu ∈ C[0, 1], but an elementary argument [8, Lemma 3.1] shows that this

property forces u(0) = 0.

In (3) the convection term (bu)′ is written in conservative form for our later

convenience. The nonconservative form bu′ can be rewritten as (bu)′ − b′u to fit

into this framework.

2 Analysis of the boundary value problem

Our aim here is to reformulate (3) in terms of Volterra integral equations in order

to show existence, uniqueness and regularity of a solution to (3), and furthermore

to facilitate its efficient numerical solution. A related reformulation was used in [7],

where a Caputo boundary value problem was rewritten in terms of the continuous

variable u′, but in (3)—as we saw in Example 1—one may have u′ /∈ C[0, 1], which

would not fit with the standard Volterra theory in [1] so a different reformula-

tion will be necessary here. Fundamentally, the Riemann-Liouville boundary value

problem (3) is less well behaved than the analogous Caputo problem of [7] and

requires more work for its satisfactory analysis and accurate numerical solution.

2.1 Equivalence of (3) to Volterra integral equations

The first result is a generalisation of Example 1.
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Lemma 1 Let g ∈ L1[0, 1]. Then the general solution of the differential equation

D2−δr = g on (0, 1) is given by

r(x) = (J2−δg)(x) + c1x
1−δ + c2x

−δ (4)

for arbitrary constants c1 and c2. If in addition r(0) = 0, then c2 = 0.

Proof The function J2−δg is a particular solution of D2−δr = g by [3, Theorem

2.14]. Equation (4) now follows from the discussion in [3, p.54]. Next, it is easy to

see from the definition of J2−δ that (J2−δg)(x) → 0 as x → 0. Consequently one

can have r(0) = 0 in (4) only if c2 = 0. �

Assume that u ∈ A1[0, 1]. Rearranging (3a) and applying Lemma 1, we have

u(x) =
(
J2−δ((bu)′ + cu− f)

)
(x) + c1x

1−δ

for some constant c1. But u(0) = 0 so one can integrate J2−δ(bu)′ by parts to get

u(x) = J1−δ(bu)(x) + J2−δ(cu)(x)− J2−δf(x) + c1x
1−δ. (5)

Now split (5) into two independent weakly singular Volterra integral equations

of the second kind, so that u = c1v + w:

v(x) = J1−δ(bv)(x) + J2−δ(cv)(x) + x1−δ (6a)

and

w(x) = J1−δ(bw)(x) + J2−δ(cw)(x)− J2−δf(x) (6b)

for 0 ≤ x ≤ 1.
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Example 2 If b = λ ∈ R is constant and c ≡ 0, then one can compute (see the

derivation of (21) later and [9, (1.82)])

v(x) = x1−δΓ (2− δ)E1−δ,2−δ(λx
1−δ) and v′(x) = x−δΓ (2− δ)E1−δ,1−δ(λx

1−δ),

where the two-parameter Mittag-Leffler function E is defined by

Eµ,θ(z) =
∞∑
k=0

zk

Γ (µk + θ)
for µ, θ, z ∈ R with µ > 0. (7)

This function is discussed in [3,9]. These formulas, combined with known proper-

ties of the Mittag-Leffler function, imply that for any λ ∈ R one has v(x) > 0 and

v′(x) > 0 for x > 0, and v′(0+) = +∞.

To discuss the solutions of (6), we introduce a family of spaces that is often

used (e.g., in [2,7]) in the analysis of weakly singular integral equations.

For q ∈ {0, 1, 2, . . . } and −∞ < ν < 1 with ν not an integer, let Cq,ν(0, 1] denote

the space of functions y ∈ C[0, 1] ∩ Cq(0, 1] such that

|y(k)(x)| ≤ C
[
x(1−ν)−k + 1

]
for k = 0, 1, . . . , q and x ∈ (0, 1]. (8)

In particular, C0,ν(0, 1] = C[0, 1].

Theorem 1 Assume that b ∈ Cq,δ(0, 1] and c ∈ Cq−1,δ(0, 1] for some q ∈ N. Then (6a)

has a unique solution v ∈ Cq,δ(0, 1] with v(0) = 0.

Assume also that
f ∈ Lp[0, 1] for some p > 1/(1− δ) if q = 1,

f ∈ Cq−1,δ(0, 1] if q > 1.

Then (6b) has a unique solution w ∈ Cq,δ(0, 1]∩C2,δ−1(0, 1] ⊂ C1[0, 1] with w(0) = 0.
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Proof Existence and uniqueness of a solution v ∈ Cq,δ(0, 1] for (6a) is a straight-

forward extension of [2, Remark 3] (cf. [7, Lemma 2.1]): observe that the forc-

ing function x1−δ of (6a) lies in Cq,δ(0, 1], v 7→ bv is a bounded mapping from

Cq,δ(0, 1] to itself by [2, Lemma 2.1], J1−δ : Cq,δ(0, 1] → Cq,δ(0, 1] is compact [2,

Lemma 2.2] and similarly v 7→ J2−δ(cv) = J1−δJ(cv) defines a compact operator

Cq,δ(0, 1] → Cq,δ(0, 1]. As we now have v ∈ C[0, 1], the property v(0) = 0 follows

quickly from (6a).

For (6b), consider first the case q = 1. Then f ∈ Lp[0, 1] with p > 1/(1 − δ)

implies J1−δf ∈ C[0, 1] by [3, Theorem 2.6]. Consequently J2−δf = J(J1−δf) is in

C1[0, 1] ⊂ C1,δ(0, 1]. In the case q > 1, f ∈ Cq−1,δ(0, 1] implies Jf ∈ Cq,δ(0, 1] and

hence J2−δf = J1−δ(Jf) is in Cq,δ(0, 1] by [2, Lemma 2.2]. Thus for all q ∈ N one

has J2−δf ∈ Cq,δ(0, 1].

Now, as for (6a), we get w ∈ Cq,δ(0, 1] ⊂ C[0, 1]. But J1−δf ∈ C[0, 1] implies

J2−δf(0) = 0 and hence w(0) = 0 from (6b). Using this property, integrate (6b)

by parts, obtaining w = J2−δ (cw + (bw)′ − f
)
; this can be differentiated to yield

w′ = J1−δ (cw + (bw)′ − f
)

= J1−δ(bw′) + J1−δ (cw + b′w − f
)

(9)

which is a Volterra integral equation in w′ where J1−δ(cw + b′w − f) ∈ C[0, 1]

is regarded as given. Thus invoking [7, Lemma 2.1] we get w′ ∈ C1,δ(0, 1]. This

implies that w ∈ C2,δ−1(0, 1], and functions in this space can be extended to lie

in C1[0, 1]. �

Above we derived (6) from (3a) and (3b). Now we proceed in the opposite

direction to show the equivalence of these two formulations.

Let v and w be the unique solutions of (6a) and (6b) that are guaranteed by

Theorem 1. For any c1, the function u := w + c1v satisfies (3a) by (6a) and (6b),
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as D2−δ = DD1−δ by the definition (2), and DrJr (any r > 0) is the identity

operator by [3, Theorem 2.14]. Furthermore u(0) = 0 since v(0) = w(0) = 0 from

Theorem 1.

We can now clarify when one has existence and uniqueness of a solution to (3).

Theorem 2 Assume the same hypotheses as Theorem 1. Let v and w be the unique

solutions of (6) that are provided by that theorem.

1. If αv(1) + βv′(1) 6= 0, then (3) has a unique solution

u = w + c1v ∈ Cq,δ(0, 1], where c1 :=
γ − αw(1)− βw′(1)

αv(1) + βv′(1)
. (10)

2. If αv(1) +βv′(1) = 0, then (3) has either no solution or infinitely many solutions.

Proof As we have seen, (3a) and (3b) are equivalent to (6). Thus existence of a

unique solution of (3) is equivalent to having a unique choice of c1 in u := w+ c1v

that enables u to satisfy the remaining boundary condition αu(1) + βu′(1) = γ

of (3c).

If αv(1) +βv′(1) 6= 0, then since u = w+ c1v it is clear that αu(1) +βu′(1) = γ

if and only if c1 is chosen according to (10).

On the other hand, suppose that αv(1) + βv′(1) = 0. Then there is no solution

to (3c) if αw(1) + βw′(1) 6= γ, while if αw(1) + βw′(1) = γ then u = w + c1v is a

solution of (3c) for any choice of c1 ∈ R. �

2.2 Sufficient conditions for existence and uniqueness of a solution to (3)

In this section we place conditions on the data of (3) that will imply

αv(1) + βv′(1) > 0. (11)
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Then Theorem 2 yields existence and uniqueness of a solution to (3).

At various points in this section, we shall assume one or more of the inequalities

c ≥ 0 on [0, 1], (12a)

b′ + c ≥ 0 on [0, 1]. (12b)

α ≥ 0, β ≥ 0 and α+ β > 0 in (3c). (12c)

Conditions such as these are commonly assumed in classical second-order differ-

ential equations to ensure that the differential operator L and its formal adjoint

satisfy a maximum principle.

Lemma 2 Assume condition (12a), b ∈ C1,δ(0, 1] and c ∈ C0,δ(0, 1]. Then v(x) > 0

for all x ∈ (0, 1].

Proof Integrate by parts using v(0) = 0 to write (6a) as

v(x) = J2−δ(cv + (bv)′)(x) + x1−δ for 0 ≤ x ≤ 1. (13)

Differentiating and using DJ2−δ = DJ1J1−δ = J1−δ, we get

v′(x) = J1−δ (cv + (bv)′
)

(x) + (1− δ)x−δ for 0 < x < 1. (14)

But v ∈ C1,δ(0, 1] by Theorem 1, so
∣∣cv + (bv)′(x)

∣∣ =
∣∣((c+ b′)v + bv′

)
(x)
∣∣ ≤ Cx−δ

and it follows by a standard estimate for Euler’s Beta function [3, Theorem D.6]

that
∣∣∣J1−δ (cv + (bv)′

)
(x)
∣∣∣ = O(x1−2δ). Consequently (14) implies that v′(x) > 0

for all x sufficiently close to x = 0.

Now suppose that the conclusion of the lemma is false. Set x∗ = inf{x ∈ (0, 1] :

v(x) ≤ 0}. As v(0) = 0 and v′(x) > 0 near x = 0, one has 0 < x∗ ≤ 1. Furthermore,

by continuity v(x∗) = 0.
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Applying D1−δ to (6a) gives

D1−δv(x)− (bv)(x)−
∫ x

t=0

c(t)v(t) dt = Γ (2− δ) on (0, 1], (15)

since J2−δ = J1−δJ , D1−δJ1−δ = I and D1−δx1−δ = Γ (2 − δ) by Theorem 2.2,

Theorem 2.14 and Example 2.4 of [3]. At x = x∗, as v(x∗) = 0 the equation (15)

becomes

Γ (2− δ) +

∫ x∗

t=0

c(t)v(t) dt = D1−δv(x∗)

=
d

dx

(
1

Γ (δ)

∫ x

t=0

(x− t)δ−1v(t) dt

) ∣∣∣∣
x=x∗

=
δ − 1

Γ (δ)

∫ x∗

t=0

(x∗ − t)δ−2v(t) dt,

as can be seen by integrating by parts before and after applying d/dx, and using

the property |v(t)| ≤ C(x∗ − t) for 0 ≤ t ≤ x∗ which follows from v(x∗) = 0 and

v ∈ C[0, 1] ∩ Cq(0, 1]. But δ − 1 < 0 and v(t) > 0 for 0 < t < x∗, so the right-hand

side of the equation is negative while the left-hand side is positive by (12a). From

this contradiction we infer that the lemma is true. �

Lemma 3 Assume conditions (12a) and (12b), b ∈ C1,δ(0, 1] and c ∈ C0,δ(0, 1].

Then v′(x) > 0 for all x ∈ (0, 1].

Proof Set s = v′. We saw in the proof of Lemma 2 that s(x) > 0 for all x near

x = 0.

Applying D1−δ to (14) yields (like the derivation of (15))

D1−δs(x) = [bs+ (b′ + c)v](x) on (0, 1]. (16)

Suppose that the conclusion of the lemma is false. Set x∗ = inf{x ∈ (0, 1] : s(x) ≤

0}. Then x∗ ∈ (0, 1] since s(x) > 0 near x = 0. We now derive a contradiction in (16)
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at x = x∗ by imitating the proof of Lemma 2, but with the argument modified to

handle the complication that s(x) blows up as x→ 0. Choose x̄ ∈ (0, x∗). Then

D1−δs(x)
∣∣∣
x=x∗

=
d

dx

(
1

Γ (δ)

∫ x̄

t=0

(x− t)δ−1s(t) dt

) ∣∣∣∣∣
x=x∗

+
d

dx

(
1

Γ (δ)

∫ x

t=x̄

(x− t)δ−1s(t) dt

) ∣∣∣∣∣
x=x∗

=
δ − 1

Γ (δ)

[∫ x̄

t=0

(x∗ − t)δ−2s(t) dt+

∫ x∗

t=x̄

(x∗ − t)δ−2s(t) dt

]
;

here the differentiation of the first integral is routine while for the second we

integrate by parts, then differentiate, then integrate by parts again. As s(x) > 0

on (0, x∗) it follows that D1−δs(x)
∣∣
x=x∗ < 0. But this inequality contradicts (16)

at x = x∗ since s(x∗) = 0 by the definition of x∗ and [(b′+c)v](x∗) > 0 by Lemma 2

and (12b). This concludes the proof. �

We come now to the main result of this section.

Theorem 3 [Existence and uniqueness of a solution to the Riemann-Liouville

boundary value problem (3)] Assume the hypotheses of Theorem 1. Assume all three

conditions in (12). Then (3) has a unique solution u ∈ Cq,δ(0, 1].

Proof Lemmas 2 and 3 imply that αz(1) + βz′(1) > 0 since α ≥ 0, β ≥ 0 and

α+ β > 0. Now Theorem 2 gives the desired result. �

Remark 1 In the case where (3) has a Dirichlet boundary condition at x = 1 (i.e.,

when β = 0), Lemma 3 is no longer needed and consequently the assumption (12b)

can be removed from Theorem 3. Similarly, one does not need the condition (12b)

in the remainder of the paper when β = 0.

Note that u ∈ Cq,δ(0, 1] gives the useful pointwise bound

|u(i)(x)| ≤ Cx1−i−δ for i = 1, 2, . . . , q and 0 < x ≤ 1 (17)
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from the definition of the space Cq,δ(0, 1].

Example 1 shows that this bound is sharp. Nevertheless the bound does not

give us a complete picture of the regularity of u, because D2−δg is not defined for

all functions g that satisfy (17) yet D2−δu is defined (it appears in (3a)). Remark 2

will shed more light on the properties of u, but first we derive a technical result

that will prove useful in discussing u here and in constructing a numerical method

for solving (3) in Section 3.1.

Remark 2 [A further comment on the regularity of u] Example 1 shows that u may

not lie in A2[0, 1], but the differential equation (3a) that u satisfies includes the

term D2−δu which is frequently perceived to be well defined only when u ∈ A2[0, 1].

This anomaly arises because u may have a singular component that lies outside

A2[0, 1] but is annihilated by the differential operator—for instance, the x1−δ term

in Example 1.

The decomposition of Theorem 2, stating that

u(x) = w(x) + c1v(x),

illustrates this structure. For Theorem 1 tells us that w ∈ C2,δ−1[0, 1], and it is

straightforward to check that C2,δ−1[0, 1] ⊂ A2[0, 1], while v lies in Cq,δ(0, 1] so

in general v /∈ C1[0, 1] and therefore v /∈ A2[0, 1]. But v satisfies the homogeneous

analogue Lv = 0 of (3a): for, applying D2−δ to (13), we get D2−δv = cv + (bv)′,

as desired.

Remark 3 [Existence and uniqueness for a Caputo two-point boundary value problem]

In [7] a result similar to the analysis of Sections 2.1 and 2.2 was obtained for a

related two-point boundary value problem where the Riemann-Liouville derivative
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in (3a) is replaced by a Caputo derivative: it was shown that the solution of

the original problem can be expressed as an integral of a linear combination of

the solutions to two weakly singular Volterra integral equations. One can easily

deduce from the proof of that equivalence an existence and uniqueness result for the

Caputo problem that is analogous to Theorem 3. Furthermore, this result requires

(in the notation of [7]) only α0 ≥ 0 instead of the more restrictive hypothesis

α0 ≥ 1/(1− δ) that was used throughout that paper.

3 Two numerical methods for solving (3)

In this section we present and analyse two numerical methods for solving (3)

numerically for u in an efficient way. Both methods are based on the representation

u = w + c1v (18)

of Theorem 2. Thus w, v and c1 need to be computed numerically.

In both methods, the solution of (3) is reduced to solving an independent

pair of weakly singular Volterra integral equations. This is done by employing the

collocation method of [7], which uses piecewise polynomials of degree m− 1 on a

graded mesh; for completeness this method is described in detail in the Appendix

below. We assume in Section 3 that the mesh grading parameter ρ that is defined

in the Appendix satisfies ρ ≥ m/(1− δ) and that N , the number of mesh intervals,

is sufficiently large, so that the error bounds from the Appendix can be invoked.

We assume that the functions b, c, f of (6) lie in Cq,δ(0, 1] with q ≥ m+ 1. The

analyses of our numerical methods rely heavily on [6]. One should however note a

difference between our definition of the space Cq,δ(0, 1] in (8) and the correspond-

ing definition in [6, equation (2.2)], where an extra logarithmic factor appears; thus



16 Natalia Kopteva, Martin Stynes

our functions are slightly better behaved than those of [6]. An inspection of the

arguments of [6] shows readily that if the logarithmic factor is removed from the

definition of Cq,δ(0, 1], this will remove all logarithmic factors from the subsequent

analysis. Consequently the error bounds from [6] that we quote below have had a

factor lnN removed wherever it appeared.

Furthermore, the collocation method of [6] uses a transformation of the in-

dependent variable, but its analysis remains valid for the special case where this

transformation is the identity mapping (see [6, Remark 5.2]), and this special case

is the method described in our Appendix.

Remark 4 In the special case where b, c, f ∈ Cq[0, 1] ⊂ Cq,δ(0, 1] with q ≥ m + 1,

one can obtain similar convergence results more simply from [7, Corollaries 3.1 a

nd 3.2].

In the error estimates of Section 3, the generic constants C depend on the choice

of collocation parameters {cj} and on the mesh grading ρ, but are independent of

the mesh diameter h.

3.1 Method I: singularity subtraction

In (18) we need to deal with v and w, but Theorem 2 reveals that v is worse

behaved than w. We shall modify v by subtracting off the weak singularity that

v(x) has at x = 0 before applying a numerical method from [7].

Set W = w′. Then, since w(0) = 0, one can write (9) as

W (x)− J1−δ
(
bW + (c+ b′)

∫ (·)

0

W

)
(x) = −J1−δf(x) (19)
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This Volterra equation has the same form as [7, (2.4)] so the collocation method

and convergence analysis of [7] can be used in (19) to solve for W .

One cannot apply the same idea directly to v because v′ /∈ C[0, 1]. Thus we

first subtract from v its weak singularity at x = 0. Set λ = b(0). Retaining only the

most significant terms from (6a), let v0 be the solution of the Volterra equation

v0(x) = J1−δ(λv0)(x) + x1−δ for 0 ≤ x ≤ 1. (20)

We derive an explicit formula for v0. Applying D1−δ to (20) yields D1−δv0 =

λv0 +Γ (2−δ), where we used [3, Example 2.4] to evaluate D1−δx1−δ. One also has

v0(0) = 0 from (20). By [3, Theorem 7.2] the solution of this initial-value problem

is

v0(x) =


x1−δ if λ = 0,

Γ (2−δ)
λ

[
E1−δ,1(λx1−δ)− 1

]
= x1−δΓ (2− δ)E1−δ,2−δ(λx

1−δ) if λ 6= 0.

(21)

by elementary manipulations of the series for E. One can verify easily that v0 ∈

Cq,δ(0, 1].

Set

s = v − v0 and S = s′. (22)

Note that s(0) = 0. Subtracting (20) from (6a), we obtain

s = J2−δ(cv) + J1−δ(bv − λv0) = J2−δ (cv + (bv − λv0)′
)

after an integration by parts. Rearranging, this becomes

s = J2−δ ((bs)′ + cs+ (b− λ)v′0 + (c+ b′)v0

)
Set S = s′ and differentiate to get

S(x)− J1−δ
(
bS + (c+ b′)

∫ (·)

0

S

)
(x) = J1−δ ((b− λ)v′0 + (c+ b′)v0

)
(x). (23)
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Recalling that λ = b(0) and J1−δ maps Cq,δ(0, 1] to itself by [2, Lemma 2.2],

one can see easily that the right-hand sides of (19) and (23) lie in Cq,δ(0, 1].

Thus (19) and (23) have exactly the same form and regularity as the integral

equation that was studied in [7] (see equation (2.4) there) and solved numerically

using the iterated collocation method on a graded mesh of diameter h with piece-

wise polynomials of degree m − 1 ≥ 0 lying in the space S−1
m−1 defined in (35),

where the value of m is chosen by the user; a full description of this method is

given in the Appendix below.

Write W it
h and Sith for the computed solutions of (19) and (23) respectively.

Set

wh(x) =

∫ x

0

W it
h (t) dt and sh(x) =

∫ x

0

Sith (t) dt for x ∈ [0, 1]. (24)

Lemma 4 There exists a constant C such that

‖w − wh‖+ ‖W −W it
h ‖+ ‖s− sh‖+ ‖S − Sith ‖ ≤ C

(
Khm + hm+1−δ

)
, (25)

where the quantity K is defined in (44).

Proof The desired bounds for W it
h and Sith are immediate from (48). The bound

on ‖w − wh‖+ ‖s− sh‖ then follow from the definitions of W and S. �

Finally, we can compute an accurate approximation of u.

Theorem 4 Assume both conditions in (12). Assume also that α ≥ 0, β ≥ 0 and

α+β > 0 in (3c). Set Vh = Sith +v′0 and vh(x) =
∫ x
0
Vh = sh(x)+v0(x) for x ∈ [0, 1].

Set

c1,h =
γ − αwh(1)− βW it

h (1)

αvh(1) + βVh(1)
(26)
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and

uh(x) = wh(x) + c1,hvh(x) for x ∈ (0, 1]. (27)

Then for h sufficiently small, the quantity c1,h is well defined by (26) and

‖u− uh‖ ≤ C
(
Khm + hm+1−δ

)
(28)

for some constant C.

Proof First, Lemmas 2 and 3 and the hypotheses on α and β imply that αv(1) +

βv′(1) > 0. Now v′ − Vh = (S + v′0)− (Sith + v′0) = S − Sith and v − vh = s− sh, so

by Lemma 4 one has

‖V − Vh‖+ ‖v − vh‖ ≤ C
(
Khm + hm+1−δ

)
. (29)

This inequality ensures that the denominator of (26) is positive for h sufficiently

small, and thus c1,h is well defined. Furthermore, Lemma 4 and (29) imply that

|c1 − c1,h| ≤ C
(
Khm + hm+1−δ

)
and that (28) holds true, on recalling that u =

w + c1v and uh = wh + c1,hvh. �

3.2 Method II: direct solution of (6)

In this section we discuss an alternative numerical method for solving (18). It

is based on computing approximations of v and w directly from (6)—i.e., unlike

Section 3.1, approximations of v and w are not constructed from approximations

of v′ and w′.

Observe that x1−δ = J1−δ (Γ (2− δ)) and consequently both Volterra equations

in (6) have the form

r − J1−δ
(
br +

∫
(cr)

)
= J1−δg,
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where J1−δg is known and lies in Cq,δ(0, 1]. This integral equation is almost identi-

cal to [7, (2.4)]: the only difference is that in [7] one has c(x)
∫ x
0
r instead of

∫ x
0

(cr).

This minor change in the lowest-order term does not affect the analysis of [7]. Thus

we can again use the iterated collocation method from our Appendix to solve (6a)

and (6b) on a graded mesh of diameter h with piecewise polynomials of degree

m− 1 ≥ 0, where m is chosen by the user.

Theorem 5 Assume both conditions in (12). Assume also that α ≥ 0, β ≥ 0 and

α+β > 0 in (3c). Let ṽh and w̃h be piecewise polynomial approximations of degree m−1

of z and v that are obtained by applying the iterated collocation method described in the

Appendix to (6a) and (6b) respectively. Apply backward differentiation of ṽh and w̃h

at x = 1 using p ≥ m+1 nodal points xi (see Appendix for their definition) to generate

approximations of v′(1) and w′(1) that we write as (∇p,hṽh)(1) and (∇p,hw̃h)′(1).

Assume that m− 1 ≥ min{1,Kβ} and set

c̃1,h =
γ − αw̃h(1)− β(∇p,hw̃h)(1)

αṽh(1) + β(∇p,hz̃h)(1)
(30)

and

ũh(x) = c̃1,hṽh(x)− w̃h(x) for x ∈ (0, 1]. (31)

Then for h sufficiently small, the quantity c̃1,h is well defined by (30) and

‖u− ũh‖ ≤ C
[
β
(
Khm−1 + hm−δ

)
+Khm + hm+1−δ

]
(32)

for some constant C, where the quantity K is defined in (44).

Proof By (48) one has

‖v − ṽh‖+ ‖w − w̃h‖ ≤ C
(
Khm + hm+1−δ

)
.
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The coarseness and smoothness of the mesh near x = 1 then implies that

|v′(1)− (∇p,hṽh)′(1)|+ |w′(1)− (∇p,hw̃h)(1)| ≤ C
(
Khm−1 + hm−δ

)
.

Consequently αṽh(1) + β(∇p,hṽh)′(1) 6= 0 for h sufficiently small by Lemmas 2

and 3. It follows that the approximation (30) of (10) satisfies

|c1 − c̃1,h| ≤ C
[
β
(
Khm−1 + hm−δ

)
+Khm + hm+1−δ

]
(33)

and furthermore the approximation ũh(x) satisfies (32). �

Remark 5 [Method I versus Method II] The error bound for Method II that is proved

in Theorem 5 is inferior to the error bound in Theorem 4 for Method I except

when one has a Dirichlet boundary condition at x = 1 in (3); on the other hand,

Method II is simpler to implement. Thus when one has a Dirichlet condition at

x = 1, Method II is to be preferred. Furthermore, our numerical experience with

various boundary conditions at x = 1 shows that in practice the bound in (32) is

always O(Khm + hm+1−δ) for m − 1 ≥ 0, so Method II is in general competitive

with Method I. This improvement of (32) will be investigated elsewhere.

4 Numerical results

To check the sharpness of the theoretical convergence bounds in Theorems 4 and 5,

we test Methods I and II (where weighted product quadrature as described in (37)

is used in both methods) on a single problem of the form (3) for the cases of

Dirichlet and Neumann boundary conditions at x = 1. In each numerical example

one has

u(x) = (0.3)−1[E1−δ,1(0.3x1−δ)− 1] + 2x2−δ − x3−2δ − 3x3 + 0.5x4,

b(x) = 1− 0.7 cos(2.3x2 − x3) and c(x) ≡ 0,
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with (α, β) = (1, 0) or (0, 1). The Mittag-Leffler function E used here was defined

in (7). The function f on the right-hand side of (3a) is specified by Lu = f and γ

is chosen such that (3b) is satisfied

Our example is constructed to have a known solution u that mimics as far

as possible the behaviour of a typical solution of (3). For one can easily check

that the derivatives of our u behave exactly as predicted by (17); furthermore,

b(x) = 0.3+O(x2) near x = 0 and the function φ(x) := (0.3)−1[E1−δ,1(0.3x1−δ)−1]

is a solution of −D2−δφ+ 0.3φ′ = 0, as can be seen using D2−δ = DD1−δ and [3,

Theorem 4.3], so u has a singular component that near x = 0 lies (almost exactly)

in the null space of the differential operator as required by Remark 2.

Example 3 Neumann condition at x = 1, Method I.

Results are presented in Tables 1–6; each table is for particular choices of m

and the collocation parameters {c1, c2, . . . , cm} in our collocation method. The

convergence rates obtained agree exactly with Theorem 4.

Table 1 Method I, case α = 0, β = 1: max |(u− uh)(xi)| for m = 1, ck = {0}; K 6= 0.

N = 27 N = 28 N = 29 N = 210 N = 211 N = 212 N = 213

δ = 0.1 1.92e-2 9.58e-3 4.78e-3 2.39e-3 1.19e-3 5.97e-4 2.98e-4
1.01 1.00 1.00 1.00 1.00 1.00

δ = 0.3 2.92e-2 1.45e-2 7.23e-3 3.61e-3 1.80e-3 9.00e-4 4.50e-4
1.01 1.00 1.00 1.00 1.00 1.00

δ = 0.5 5.30e-2 2.61e-2 1.29e-2 6.39e-3 3.18e-3 1.58e-3 7.89e-4
1.02 1.02 1.01 1.01 1.01 1.00

δ = 0.7 1.29e-1 6.28e-2 3.06e-2 1.50e-2 7.34e-3 3.61e-3 1.78e-3
1.04 1.04 1.03 1.03 1.02 1.02

δ = 0.9 6.29e-1 3.10e-1 1.53e-1 7.56e-2 3.72e-2 1.83e-2 8.97e-3
1.02 1.02 1.02 1.02 1.03 1.03
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Table 2 Method I, case α = 0, β = 1: max |(u− uh)(xi + ckhi)| for m = 1, ck = { 1
2
}; K = 0.

N = 27 N = 28 N = 29 N = 210 N = 211 N = 212 N = 213

δ = 0.1 7.50e-5 2.12e-5 5.98e-6 1.68e-6 4.67e-7 1.30e-7 3.59e-8
1.82 1.83 1.84 1.84 1.85 1.85

δ = 0.3 5.49e-4 1.77e-4 5.64e-5 1.79e-5 5.62e-6 1.76e-6 5.49e-7
1.63 1.65 1.66 1.67 1.67 1.68

δ = 0.5 3.03e-3 1.11e-3 4.00e-4 1.44e-4 5.14e-5 1.83e-5 6.51e-6
1.45 1.47 1.48 1.48 1.49 1.49

δ = 0.7 1.52e-2 6.31e-3 2.61e-3 1.07e-3 4.37e-4 1.78e-4 7.26e-5
1.26 1.28 1.28 1.29 1.29 1.30

δ = 0.9 9.52e-2 4.37e-2 2.03e-2 9.47e-3 4.43e-3 2.07e-3 9.66e-4
1.12 1.11 1.10 1.10 1.10 1.10

Table 3 Method I, case α = 0, β = 1: max |(u− uh)(xi)| for m = 2, ck = {0, 1}; K 6= 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

δ = 0.1 8.33e-4 2.08e-4 5.21e-5 1.30e-5 3.26e-6 8.14e-7 2.04e-7
2.00 2.00 2.00 2.00 2.00 2.00

δ = 0.3 9.96e-4 2.50e-4 6.26e-5 1.57e-5 3.92e-6 9.81e-7 2.45e-7
1.99 2.00 2.00 2.00 2.00 2.00

δ = 0.5 1.09e-3 2.78e-4 7.02e-5 1.77e-5 4.44e-6 1.11e-6 2.79e-7
1.98 1.98 1.99 1.99 2.00 2.00

δ = 0.7 1.82e-3 4.62e-4 1.17e-4 2.97e-5 7.50e-6 1.89e-6 4.76e-7
1.98 1.98 1.98 1.98 1.99 1.99

δ = 0.9 2.20e-2 5.75e-3 1.52e-3 3.99e-4 1.04e-4 2.72e-5 7.06e-6
1.93 1.92 1.93 1.93 1.94 1.95

Table 4 Method I, case α = 0, β = 1: max |(u − uh)(xi + ckhi)| for m = 2, ck = {0, 2
3
};

K = 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

δ = 0.1 6.41e-6 8.80e-7 1.21e-7 1.65e-8 2.24e-9 3.05e-10 4.14e-11
2.86 2.87 2.87 2.88 2.88 2.88

δ = 0.3 3.41e-5 5.47e-6 8.67e-7 1.36e-7 2.13e-8 3.32e-9 5.15e-10
2.64 2.66 2.67 2.68 2.68 2.69

δ = 0.5 1.11e-4 2.08e-5 3.83e-6 6.96e-7 1.25e-7 2.24e-8 4.00e-9
2.42 2.44 2.46 2.47 2.48 2.49

δ = 0.7 2.11e-4 3.30e-5 5.34e-6 9.11e-7 1.64e-7 3.08e-8 5.97e-9
2.68 2.63 2.55 2.48 2.41 2.37

δ = 0.9 1.25e-2 2.83e-3 6.77e-4 1.65e-4 4.01e-5 9.72e-6 2.34e-6
2.14 2.06 2.04 2.04 2.05 2.05

Example 4 Neumann condition at x = 1, Method II.

Results are presented in Tables 7–10. This is the sole example where our numer-

ical results are better than the rates predicted by our theory: while (32) guarantees



24 Natalia Kopteva, Martin Stynes

Table 5 Method I, case α = 0, β = 1: max |(u − uh)(xi + ckhi)| for m = 3, ck = {0, 1
3
, 1};

K 6= 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

δ = 0.1 2.09e-6 2.61e-7 3.25e-8 4.06e-9 5.08e-10 6.35e-11
3.00 3.00 3.00 3.00 3.00

δ = 0.3 2.37e-6 2.94e-7 3.67e-8 4.57e-9 5.70e-10 7.11e-11
3.01 3.01 3.00 3.00 3.00

δ = 0.5 1.42e-5 1.80e-6 2.27e-7 2.86e-8 3.58e-9 4.48e-10
2.98 2.99 2.99 3.00 3.00

δ = 0.7 9.11e-5 1.18e-5 1.54e-6 2.00e-7 2.56e-8 3.26e-9
2.94 2.94 2.95 2.96 2.97

δ = 0.9 1.63e-3 2.25e-4 2.93e-5 3.90e-6 5.24e-7 6.99e-8
2.86 2.94 2.91 2.90 2.91

Table 6 Method I, case α = 0, β = 1: max |(u − uh)(xi + ckhi)| for m = 3, ck = {0, 1
2
, 1};

K = 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

δ = 0.1 2.24e-7 1.46e-8 9.41e-10 6.00e-11 3.80e-12 2.42e-13
3.93 3.96 3.97 3.98 3.97

δ = 0.3 8.47e-7 6.21e-8 4.49e-9 3.23e-10 2.34e-11 1.71e-12
3.77 3.79 3.79 3.79 3.78

δ = 0.5 4.53e-6 4.02e-7 3.50e-8 3.04e-9 2.64e-10 2.30e-11
3.49 3.52 3.53 3.52 3.52

δ = 0.7 3.23e-5 3.45e-6 3.54e-7 3.57e-8 3.58e-9 3.59e-10
3.23 3.28 3.31 3.32 3.32

δ = 0.9 7.00e-4 9.20e-5 1.10e-5 1.25e-6 1.40e-7 1.56e-8
2.93 3.07 3.13 3.16 3.17

only O
(
Khm−1 + hm−δ

)
, the actual rates observed are O (hm) when K 6= 0 and

O
(
hm+1−δ

)
when K = 0.

Example 5 Dirichlet condition at x = 1, Method II.

When one has a Dirichlet boundary condition at x = 1, Method II has the

same convergence bound at Method I and is moreover simpler to implement, so

we do not consider Method I for this example. Tables 11–16 present the errors and

rates of convergence for Method II. The convergence rates in these tables match

exactly the rates predicted by Theorem 5.
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Table 7 Method II, case α = 0, β = 1: max |(u− uh)(xi)| for m = 1, ck = {0}, 3-point back-

ward differencing using {xN−2, xN−1, xN} (NOTE: 2-point backward differencing produces

similar rates of convergence, but somewhat larger errors); K 6= 0.

N = 27 N = 28 N = 29 N = 210 N = 211 N = 212 N = 213

δ = 0.1 2.57e-2 1.28e-2 6.39e-3 3.19e-3 1.60e-3 7.98e-4 3.99e-4
1.01 1.00 1.00 1.00 1.00 1.00

δ = 0.3 4.06e-2 2.01e-2 1.00e-2 4.99e-3 2.49e-3 1.25e-3 6.22e-4
1.01 1.01 1.00 1.00 1.00 1.00

δ = 0.5 7.48e-2 3.66e-2 1.80e-2 8.91e-3 4.42e-3 2.20e-3 1.09e-3
1.03 1.02 1.02 1.01 1.01 1.01

δ = 0.7 1.85e-1 8.94e-2 4.32e-2 2.10e-2 1.03e-2 5.02e-3 2.47e-3
1.05 1.05 1.04 1.04 1.03 1.02

δ = 0.9 9.18e-1 4.54e-1 2.25e-1 1.11e-1 5.46e-2 2.68e-2 1.31e-2
1.02 1.01 1.02 1.02 1.03 1.03

Table 8 Method II, case α = 0, β = 1: max |(u−uh)(xi+ckhi)| for m = 1, ck = { 1
2
}, 3-point

backward differencing using {xN−2, xN−1, xN}; K = 0.

N = 27 N = 28 N = 29 N = 210 N = 211 N = 212 N = 213

δ = 0.1 3.06e-4 7.93e-5 2.06e-5 5.35e-6 1.39e-6 3.62e-7 9.45e-8
1.95 1.95 1.94 1.94 1.94 1.94

δ = 0.3 1.09e-3 3.29e-4 9.94e-5 3.01e-5 9.13e-6 2.78e-6 8.47e-7
1.73 1.73 1.72 1.72 1.72 1.71

δ = 0.5 5.17e-3 1.83e-3 6.49e-4 2.29e-4 8.11e-5 2.87e-5 1.01e-5
1.50 1.50 1.50 1.50 1.50 1.50

δ = 0.7 2.46e-2 1.01e-2 4.15e-3 1.69e-3 6.91e-4 2.81e-4 1.14e-4
1.28 1.29 1.29 1.30 1.30 1.30

δ = 0.9 1.51e-1 6.74e-2 3.12e-2 1.45e-2 6.80e-3 3.18e-3 1.48e-3
1.16 1.11 1.10 1.10 1.10 1.10

5 Conclusions

It was shown that a two-point boundary value problem whose highest-order deriva-

tive is a Riemann-Liouville fraction derivative (of order 2 − δ, with 0 < δ < 1)

could be reformulated in terms of a pair of weakly singular Volterra integral equa-

tions of the second kind. This reformulation enabled us to prove existence and

uniqueness of a solution to the boundary value problem. It also led to the devel-

opment of two efficient collocation methods for solving the original problem. One

of these (Method II) is simpler than the other (Method I) but our error estimate
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Table 9 Method II, case α = 0, β = 1: max |(u − uh)(xi)| for m = 2, ck = {0, 1}, 4-point

backward differencing using {xN−3, xN−2, xN−1, xN}; K 6= 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

δ = 0.1 2.22e-4 6.97e-5 1.94e-5 5.14e-6 1.32e-6 3.35e-7 8.43e-8
1.67 1.84 1.92 1.96 1.98 1.99

δ = 0.3 5.80e-4 1.84e-4 5.18e-5 1.37e-5 3.54e-6 8.99e-7 2.27e-7
1.65 1.83 1.91 1.96 1.98 1.99

δ = 0.5 1.61e-3 5.42e-4 1.57e-4 4.23e-5 1.10e-5 2.83e-6 7.16e-7
1.57 1.79 1.89 1.94 1.97 1.98

δ = 0.7 4.23e-3 1.72e-3 5.47e-4 1.57e-4 4.26e-5 1.12e-5 2.90e-6
1.30 1.65 1.80 1.88 1.92 1.95

δ = 0.9 1.17e-1 1.12e-2 2.05e-3 7.82e-4 2.51e-4 7.45e-5 2.10e-5
3.39 2.45 1.39 1.64 1.75 1.83

Table 10 Method II, case α = 0, β = 1: max |(u − uh)(xi + ckhi)| for m = 2, ck = {0, 2
3
},

4-point backward differencing using {xN−3, xN−2, xN−1, xN}; K = 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

δ = 0.1 2.50e-4 3.15e-5 3.96e-6 4.97e-7 6.24e-8 7.85e-9 9.88e-10
2.99 2.99 2.99 2.99 2.99 2.99

δ = 0.3 6.88e-4 9.03e-5 1.18e-5 1.55e-6 2.05e-7 2.74e-8 3.68e-9
2.93 2.93 2.93 2.92 2.91 2.89

δ = 0.5 2.59e-3 3.79e-4 5.60e-5 8.46e-6 1.31e-6 2.09e-7 3.39e-8
2.77 2.76 2.73 2.69 2.65 2.62

δ = 0.7 1.38e-2 2.36e-3 4.16e-4 7.62e-5 1.45e-5 2.84e-6 5.67e-7
2.55 2.51 2.45 2.39 2.35 2.32

δ = 0.9 2.32e-1 4.01e-2 7.48e-3 1.52e-3 3.29e-4 7.48e-5 1.75e-5
2.53 2.42 2.30 2.21 2.14 2.10

Table 11 Method II, case α = 1, β = 0: max |(u− uh)(xi)| for m = 1, ck = {0}; K 6= 0.

N = 27 N = 28 N = 29 N = 210 N = 211 N = 212 N = 213

δ = 0.1 1.00e-2 5.02e-3 2.51e-3 1.26e-3 6.28e-4 3.14e-4 1.57e-4
1.00 1.00 1.00 1.00 1.00 1.00

δ = 0.3 1.53e-2 7.63e-3 3.80e-3 1.90e-3 9.48e-4 4.74e-4 2.37e-4
1.01 1.00 1.00 1.00 1.00 1.00

δ = 0.5 2.80e-2 1.38e-2 6.80e-3 3.36e-3 1.67e-3 8.29e-4 4.13e-4
1.02 1.02 1.02 1.01 1.01 1.01

δ = 0.7 7.12e-2 3.49e-2 1.70e-2 8.29e-3 4.05e-3 1.98e-3 9.75e-4
1.03 1.04 1.04 1.03 1.03 1.03

δ = 0.9 3.47e-1 1.88e-1 9.76e-2 4.94e-2 2.46e-2 1.21e-2 5.96e-3
0.89 0.94 0.98 1.01 1.0 1.03

for Method II is, for certain data, less good than our error estimate for Method I.

Nevertheless, our numerical experience has been that both methods achieve the
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Table 12 Method II, case α = 1, β = 0: max |(u − uh)(xi + ckhi)| for m = 1, ck = { 1
2
};

K = 0.

N = 27 N = 28 N = 29 N = 210 N = 211 N = 212 N = 213

δ = 0.1 2.33e-4 6.26e-5 1.68e-5 4.51e-6 1.21e-6 3.24e-7 8.68e-8
1.89 1.90 1.90 1.90 1.90 1.90

δ = 0.3 1.14e-3 3.53e-4 1.09e-4 3.36e-5 1.03e-5 3.18e-6 9.80e-7
1.69 1.70 1.70 1.70 1.70 1.70

δ = 0.5 5.35e-3 1.91e-3 6.79e-4 2.41e-4 8.53e-5 3.02e-5 1.07e-5
1.48 1.49 1.50 1.50 1.50 1.50

δ = 0.7 2.55e-2 1.06e-2 4.33e-3 1.77e-3 7.21e-4 2.93e-4 1.19e-4
1.27 1.29 1.29 1.30 1.30 1.30

δ = 0.9 1.70e-1 8.27e-2 3.95e-2 1.87e-2 8.77e-3 4.11e-3 1.92e-3
1.04 1.07 1.08 1.09 1.09 1.10

Table 13 Method II, case α = 1, β = 0: max |(u− uh)(xi)| for m = 2, ck = {0, 1}; K 6= 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

δ = 0.1 1.82e-4 4.54e-5 1.13e-5 2.84e-6 7.09e-7 1.77e-7 4.43e-8
2.00 2.00 2.00 2.00 2.00 2.00

δ = 0.3 4.42e-4 1.11e-4 2.79e-5 6.98e-6 1.75e-6 4.37e-7 1.09e-7
1.99 2.00 2.00 2.00 2.00 2.00

δ = 0.5 1.24e-3 3.17e-4 8.07e-5 2.04e-5 5.15e-6 1.30e-6 3.25e-7
1.96 1.97 1.98 1.99 1.99 1.99

δ = 0.7 4.17e-3 1.13e-3 2.99e-4 7.82e-5 2.03e-5 5.21e-6 1.33e-6
1.89 1.91 1.93 1.95 1.96 1.97

δ = 0.9 2.07e-2 6.44e-3 1.90e-3 5.43e-4 1.51e-4 4.14e-5 1.12e-5
1.68 1.76 1.81 1.84 1.87 1.89

Table 14 Method II, case α = 1, β = 0: max |(u − uh)(xi + ckhi)| for m = 2, ck = {0, 2
3
};

K = 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211 N = 212

δ = 0.1 2.14e-5 2.91e-6 3.92e-7 5.27e-8 7.07e-9 9.48e-10 1.27e-10
2.88 2.89 2.90 2.90 2.90 2.90

δ = 0.3 1.30e-4 2.05e-5 3.21e-6 4.98e-7 7.69e-8 1.19e-8 1.83e-9
2.66 2.68 2.69 2.69 2.70 2.70

δ = 0.5 8.08e-4 1.50e-4 2.73e-5 4.92e-6 8.79e-7 1.57e-7 2.78e-8
2.43 2.46 2.47 2.48 2.49 2.49

δ = 0.7 5.68e-3 1.25e-3 2.68e-4 5.62e-5 1.17e-5 2.41e-6 4.97e-7
2.18 2.23 2.25 2.27 2.28 2.28

δ = 0.9 8.38e-2 2.30e-2 5.92e-3 1.47e-3 3.56e-4 8.53e-5 2.03e-5
1.86 1.96 2.01 2.04 2.06 2.07

same rates of convergence in practice; a theoretical justification of this observation

is a topic for future research.
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Table 15 Method II, case α = 1, β = 0: max |(u− uh)(xi + ckhi)| for m = 3, ck = {0, 1
3
, 1};

K 6= 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

δ = 0.1 1.14e-6 1.39e-7 1.71e-8 2.11e-9 2.63e-10 3.28e-11
3.04 3.02 3.01 3.01 3.00

δ = 0.3 2.66e-6 3.19e-7 3.89e-8 4.78e-9 5.90e-10 7.32e-11
3.06 3.04 3.02 3.02 3.01

δ = 0.5 5.59e-6 6.82e-7 8.45e-8 1.05e-8 1.30e-9 1.62e-10
3.03 3.01 3.01 3.01 3.01

δ = 0.7 1.38e-5 1.56e-6 1.88e-7 2.32e-8 2.91e-9 3.65e-10
3.15 3.05 3.01 3.00 2.99

δ = 0.9 1.37e-3 1.91e-4 2.28e-5 2.60e-6 2.91e-7 3.38e-8
2.84 3.06 3.14 3.16 3.11

Table 16 Method II, case α = 1, β = 0: max |(u− uh)(xi + ckhi)| for m = 3, ck = {0, 1
2
, 1};

K = 0.

N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

δ = 0.1 3.16e-7 2.21e-8 1.51e-9 1.02e-10 6.87e-12 4.59e-13
3.84 3.87 3.89 3.89 3.90

δ = 0.3 1.33e-6 1.08e-7 8.59e-9 6.70e-10 5.19e-11 4.01e-12
3.61 3.66 3.68 3.69 3.70

δ = 0.5 3.93e-6 3.90e-7 3.63e-8 3.28e-9 2.93e-10 2.60e-11
3.33 3.42 3.47 3.49 3.50

δ = 0.7 1.16e-5 1.03e-6 9.45e-8 8.86e-9 8.48e-10 8.26e-11
3.50 3.44 3.42 3.38 3.36

δ = 0.9 1.21e-3 1.75e-4 2.17e-5 2.53e-6 2.86e-7 3.22e-8
2.79 3.01 3.10 3.14 3.15
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A The piecewise polynomial collocation method

In this appendix we describe briefly the collocation method of [1,6,7] that is used to solve

Volterra integral equations of the form

W (x)− J1−δ(bW )(x)− J1−δ

(
(b′ + c)

∫ (·)

0
W

)
(x) = J1−δg(x) for x ∈ [0, 1] (34)

where g ∈ Cq,δ(0, 1] is arbitrary.
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Let N be a positive integer. Divide [0, 1] by the mesh 0 = x0 < x1 < · · · < xN = 1, where

xi = (i/N)ρ for i = 0, 1, . . . , N . The user-chosen parameter ρ ∈ [1,∞) determines the grading

of the mesh; when ρ = 1 the mesh is uniform.

Set hi = xi+1 − xi for i = 1, 2, . . . , N . Set h = maxhi.

Let m be a user-chosen positive integer. When solving (34) numerically, our computed

solution Wh will lie in the space

S−1
m−1 :=

{
v : v

∣∣
(xi,xi+1)

∈ πm−1, i = 0, 1, . . . , N − 1
}

(35)

comprising piecewise polynomials of degree at most m−1 that may be discontinuous at interior

mesh points xi. The set of collocation points in each mesh interval [xi, xi+1] is

Xh := {xi + cjhi : 0 ≤ c1 < c2 < · · · < cm ≤ 1, i = 0, 1, . . . , N − 1} (36)

where the collocation parameters {cj} are chosen by the user. If c1 = 0 and cm = 1, then φh

will lie in the space S−1
m−1 ∩ C[0, 1] =: S0

m−1, and (to make the number of equations equal

to the number of unknowns) we require Wh to satisfy the initial condition Wh(0) = 0 when

solving (34) because W (0) = 0.

As in [6], let PN : C[0, 1] → S−1
m−1 be the piecewise polyomial of degree at most m − 1

that interpolates at each collocation point in Xh. Then the collocation solution Wh ∈ S−1
m−1

of (34) is defined, for all x ∈ Xh ∪ {1}, by

Wh(x)− J1−δPN (bWh)(x)− J1−δPN

(
(b′ + c)

∫ ·
t=0

Wh

)
(x) = J1−δPNg(x). (37)

Here weighted product quadrature, with the collocation points as nodes, has been used to

evaluate each integral J1−δ(·). That is, on each mesh interval [xi−1, xi] the function (φ, say)

that multiplies (x−t)−δ in each expression J1−δ(· · · )(x) is replaced by the polynomial PNφ of

degree m− 1 that interpolates to φ at the collocation points xi−1 + cjhi, j = 1, 2, . . . ,m, then

the resulting integrals are evaluated exactly; this procedure is described fully in [1, §6.2.2].

Imitating [2,6], we shall assume here that all integrals are evaluated exactly. That is,

instead of (37) we consider

Wh(x)−J1−δ(bWh)(x)−J1−δ
(

(b′ + c)

∫ ·
t=0

Wh

)
(x) = J1−δg(x) for all x ∈ Xh∪{1}. (38)
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The extension of our analysis to take weighted product quadrature into account will be con-

sidered in a separate paper. Note that in [7] we dealt with weighted product quadrature for a

similar method, but the data b, c, g lay in the smoother space Cq [0, 1].

In the analysis that follows, since the formulas become complicated, for convenience we

omit the (b′ + c)
∫
Wh term from (38); relative to bWh it is a lower-order term that will not

influence materially any of our results.

We must show first that Wh is well defined by (38) for all sufficiently large N . Define

B : L∞[0, 1]→ L∞[0, 1] by (Bφ)(x) := b(x)φ(x) for x ∈ [0, 1]. Then (38) is equivalent to

Wh − PNJ1−δBWh = PNJ
1−δg (39)

(note that PNWh = Wh). Let L denote the space of all bounded linear operators from

(Cq,δ(0, 1], ‖ · ‖∞) to itself. From [2, Lemma 2.2] and ‖B‖L ≤ ‖b‖∞ it follows that J1−δB :

(Cq,δ(0, 1], ‖ · ‖∞)→ (Cq,δ(0, 1], ‖ · ‖∞) is compact. The compactness of J1−δB and the Fred-

holm alternative imply that (I−J1−δB)−1 exists and is in L. But ‖J1−δB−PNJ1−δB‖L → 0

as N →∞ by a minor variation of [2, Lemma 3.2]. Hence (I − PNJ1−δPNB)−1 exists and is

in L — i.e., Wh is well defined by (39) — for all sufficiently large N .

Next, from (34) and (39) it follows that

Wh −W = (I − PNJ1−δB)−1(PN − I)J1−δ(g +BW ). (40)

From above we have ‖(I − PNJ
1−δPNB)−1‖L ≤ C. We know that g ∈ Cq,δ(0, 1]. Also,

BW ∈ Cq,δ(0, 1] by [2, Lemma 2.1] and J1−δ maps Cq,δ(0, 1] to itself [2, Lemma 2.2]. Thus

‖(PN − I)J1−δ(g +BW )‖∞ ≤ Chm for ρ ≥ m/(1− δ) (41)

by [6, (5.21)] (discarding a factor lnN in the case ρ = m/(1− δ)). Consequently (40) yields

‖W −Wh‖∞ ≤ Chm for ρ ≥ m/(1− δ), (42)

provided N is sufficiently large.

Next, we prove that by a judicious choice of the collocation points one can ensure super-

convergence of the computed solution Wh at these points. By the definition of PN one has

PNW = W at each collocation point. Now

(I − PNJ1−δB)(PNW −Wh) = PN (J1−δBW + J1−δg)− PNJ1−δBPNW − PNJ1−δg,
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from (34) and (39). Thus

PNW −Wh = (I − PNJ1−δB)−1PNJ
1−δ(BW −BPNW ).

Here we know that ‖(I − PNJ1−δPNB)−1‖L ≤ C for N sufficiently large and ‖PN‖L ≤ C

by [2, (3.16)], so

‖PNW −Wh‖∞ ≤ C‖J1−δB(I − PN )W‖∞. (43)

Set

K =

∣∣∣∣∣∣
∫ 1

0

m∏
j=1

(s− cj) ds

∣∣∣∣∣∣ . (44)

Then there exists a constant C (depending on V ) such that for ρ ≥ m/(1− δ) one has

‖J1−δB(I − PN )W‖∞ ≤ C(Khm + hm+1−δ); (45)

for the case K 6= 0 in (45), simply invoke [6, (5.21)], while if K = 0, on taking n = 1, µ = 1, ν =

δ and s = 0 in the argument in [10, pp.128–131], by inspection one sees that this calculation

extends to our situation with singularities at the diagonal y = x and the boundary y = 0, and

one obtains (45) with K = 0. Therefore (43) yields

‖PNW −Wh‖∞ ≤ C(Khm + hm+1−δ) for ρ ≥ m/(1− δ) and N sufficiently large, (46)

i.e., one has superconvergence of the computed solution Wh at the collocation points when

K = 0.

The iterated collocation solution W it
h is then defined [1, Section 6.2.1] by

W it
h (x) = J1−δ(bWh)(x) + J1−δ

(
(b′ + c)

∫ (·)

0
Wh

)
(x) + J1−δg(x) (47)

for x ∈ [0, 1]. Note that W it
h (x) = Wh(x) for x ∈ Xh ∪ {1}.

By subtracting (47) from (34) we get

W −W it
h = J1−δB(W −Wh) = J1−δB(I − PN )W + J1−δB(PNW −Wh).

Hence

‖W −W it
h ‖∞ ≤ C(Khm + hm+1−δ) for ρ ≥ m/(1− δ) and N sufficiently large, (48)

by (45) and (46).
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