

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4006	SEMESTER: Spring 2008
MODULE TITLE: Engineering Mathematics 5	DURATION OF EXAMINATION: $2\frac{1}{2}$ hours
LECTURER: Dr. Sarah Mitchell	PERCENTAGE OF TOTAL MARKS: 70%
INSTRUCTIONS TO CANDIDATES: The best four answered questions contri	ibute to this assessment.

There are some useful formulae on the back page of this booklet. You may use a calculator and log tables. 1. (a) Consider the vector valued function

$$\mathbf{r}(t) = \begin{cases} (1+t^2, t^3, 1) & \text{if } -1 \le t \le 1\\ (2t, 1, t) & \text{if } 1 \le t \le 2 \end{cases}$$

Find its derivative, and hence find the unit tangent vector to the curve defined by $\mathbf{r}(t)$ and comment on its smoothness

(b) Consider the path traced out by the point whose position vector at time t is

$$\mathbf{r}(t) = \sin 2t \,\mathbf{i} + 2\sin^2 t \,\mathbf{j} \,, \qquad 0 \le t \le \pi \,.$$

Determine the arclength parameter s and write down the intrinsic equation of the curve. Find an expression for the curvature.

(c) Find the directional derivative of the scalar valued function

$$f(x, y, z) = \sin(yz) + \ln(x^2) ,$$

at the point $(1, 1, \pi)$ in the direction of the vector $\mathbf{i} + \mathbf{j} - \mathbf{k}$.

2. (a) Find the work done by the force field

$$\mathbf{F}(x, y, z) = z \,\mathbf{i} + y \,\mathbf{k} \;,$$

in moving a particle from the point (3, 0, 0) to the point $(0, 3, \pi/2)$ along the helix $x = 3 \cos t$, $y = 3 \sin t$, z = t.

- (b) Evaluate $\iint_R x \, dA$ where R is the region $x^2 + 1 \le y \le 2x + 1$.
- (c) State Stokes' Theorem in the plane. Let C be the circle $x^2 + y^2 = 25$ in the plane z = 3, oriented counter-clockwise when viewed from above. Use Stokes' Theorem to evaluate $\oint \mathbf{F} \cdot d\mathbf{r}$ where

$$\mathbf{F}(x, y, z) = (2x + y - 2z)\mathbf{i} + (2x - 4y + z^2)\mathbf{j} + (x + 2y - z^2)\mathbf{k}.$$
11

3. (a) The vector field

$$\mathbf{F}(x, y, z) = Ax^3y^2z\,\mathbf{i} + (z^3 + Bx^4yz)\,\mathbf{j} + (3yz^2 - x^4y^2)\,\mathbf{k} ,$$

is conservative. Find values of the constants A and B. Hence find a scalar field ϕ such that $\mathbf{F} = \nabla \phi$.

1

10

8

7

7

7

- (b) Explain the term *level surfaces* in relation to any scalar field ω . Interpret $\nabla \omega$ with regard to level surfaces. Hence find the unit normal to the surface defined by $z = e^{xy}$ at the point (1, 0, 1).
- (c) Use Taylor's theorem in two dimensions to find the first order approximation of

$$f(x,y) = e^y + x^2 ,$$

at the point (1,0). Hence estimate f(0.8,0.1).

4. Consider the second order partial differential equation

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} = f(x, y, u_x, u_y) ,$$

where A, B and C are constant.

Engineering Mathematics 5

MA4006

(a)	Give the criteria to classify the above equation as parabolic, ellip- tic or hyperbolic.	3
(b)	Write down the differential equation which defines the character- istics.	2

(c) Consider the following partial differential equations:

(i)
$$u_{xx} - 4u_{yy} + u_x = 0$$

(ii) $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial x} - u$
(iii) $u_{xx} + 3u_{yy} = \sin x$.

Fully classify these equations and find and sketch the real characteristics (if any).

(d) Consider the partial differential equation

$$u_{xx} + 3u_{xt} + 2u_{tt} = 0 \; .$$

Use the transformation $\alpha = x-t$, $\beta = x-\frac{1}{2}t$ to reduce the equation to a simpler form and determine the general solution u(x,t).

Hence find the particular solution that satisfies the boundary conditions

$$u(x,0) = x^2$$
, $u_t(x,0) = 0$.

10

Marks

9

6

2

5. (a) Consider a bar of heat conducting material of length l. The partial differential equation describing the conduction of heat through the bar is given by

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}$$

Assume zero temperature at x = 0, i.e. u(0, t) = 0, and no heat loss at x = l, i.e. $u_x(l, t) = 0$.

Use the method separation of variables to show that a form of the solution appropriate to these boundary conditions is given by

$$u(x,t) = \sum_{n=1}^{\infty} B_n \exp\left(-\frac{c^2 \left(n - \frac{1}{2}\right)^2 \pi^2 t}{l^2}\right) \sin\left(\frac{\left(n - \frac{1}{2}\right) \pi x}{l}\right)$$

where the B_n are constants.

Show that if, in addition, $u = \sin\left(\frac{3\pi x}{2l}\right)$ when t = 0 for 0 < x < l, then the solution simplifies to

$$u(x,t) = \exp\left(-\frac{9c^2\pi^2t}{4l^2}\right)\sin\left(\frac{3\pi x}{2l}\right) \ .$$

(b) Find the equation relating the constants k, m, n and c so that the function 1.4

$$u = e^{-\kappa t} \cos(mx) \cos(nt) \; ,$$

is a solution of the partial differential equation

$$c^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2} + 2k \frac{\partial u}{\partial t} \; .$$

6. Let Ω be the unit square $(0,1) \times (0,1)$, with boundary Γ and closure $\overline{\Omega} = [0,1] \times [0,1]$. Consider the boundary value problem

$$Lu = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y), \quad (x, y) \in \Omega$$

with Dirichlet boundary conditions

$$u(x,0) = \phi_0(x) , \qquad u(x,1) = \phi_1(x) u(0,y) = \psi_0(y) , \qquad u(1,y) = \psi_1(y) .$$

17

- (a) Taking a fixed-width mesh h in both the x and y directions, formulate the discretised problem. The 2nd derivative can be approximated using the standard $O(h^2)$ operator.
- (b) Show that the finite difference operator L^h satisfies a maximum principle of the form:

$$L^{h}v_{i,j} \ge 0 \ \forall i,j \ \Rightarrow \max_{\Omega^{h}} |v_{i,j}| \le \max_{\Gamma^{h}} |v_{i,j}|$$

where $v_{i,j}$ is any mesh-function defined on $\bar{\Omega}^h$.7(c) Show that the solution of the discretised problem is unique.6

(d) Determine the linear system of equations resulting from the discretised problem where f(x, y) = 1 + xy and the boundary conditions are given by

$$u(x,0) = x(1-x),$$
 $u(x,1) = 1,$
 $u(0,y) = \frac{y}{2}(1+y),$ $u(1,y) = y,$

using a stepsize of $h = \frac{1}{3}$ in both the x and y directions.

8

Useful Information

Half-range fourier **sine** series of period 2*l*:

$$f(x) = \sum_{n=1}^{\infty} B_n \sin \frac{\left(n - \frac{1}{2}\right)\pi x}{l}$$

with
$$B_n = \frac{2}{l} \int_0^l f(x) \sin \frac{\left(n - \frac{1}{2}\right)\pi x}{l} dx$$
.

Polar Coordinates:

$$x = r \cos \theta$$
, $y = r \sin \theta$, $0 \le \theta \le 2\pi$, $r \ge 0$.

Taylor Series in three variables:

$$f(x, y, z) = f(x_0, y_0, z_0) + \delta \mathbf{r} \cdot \nabla f|_{(x_0, y_0, z_0)} + O(|\delta \mathbf{r}|^2) ,$$

where $(h, k, l) = \delta \mathbf{r}$ with $h = x - x_0$, $k = y - y_0$ and $l = z - z_0$.