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ABSTRACT

Oblique (non-vertical) liquid curtains are examined under the assumption that the Froude number is large. As shown previously [E. S.
Benilov, “Oblique liquid curtains with a large Froude number,” J. Fluid Mech. 861, 328 (2019)], their structure depends on the Weber
number: if We< 1 (strong surface tension), the Navier–Stokes equations admit asymptotic solutions describing curtains bending upward,
i.e., against gravity. In the present paper, it is shown that such curtains are unstable with respect to small perturbations of the flow
parameters at the outlet: they give rise to a disturbance traveling downstream and becoming singular near the curtain’s terminal point (where
the liquid runs out of the initial supply of kinetic energy). It is argued that, since the instability is spatially localized, the curtain can be
stabilized by a properly positioned collection nozzle. All curtains with We> 1 bend downward and are shown to be stable.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143532

I. INTRODUCTION

Liquid curtains have been part of classical hydrodynamics for
more than 60 years since the seminal work of G. I. Taylor (described
in the appendix of Ref. 1). They arise when the liquid is ejected
through a long narrow slot (outlet); if it is ejected obliquely, the cur-
tain’s trajectory is curved by gravity.

The present work is concerned with oblique curtains bending
upward. Such solutions were first obtained via a semi-
phenomenological model2 and then rediscovered via straightforward
asymptotic analysis of the Navier–Stokes equations.3 This counter-
intuitive result was criticized by Ref. 4, who noted that the asymptotic
equations used to derive it are hyperbolic, and one of the characteris-
tics corresponds to waves propagating upstream. According to Ref. 4,
this circumstance necessitates that the boundary condition prescribing
the ejection angle be replaced with the requirement that the curtains
fall vertically down. This argument was disputed in Ref. 5, who
pointed out that the change of the exit condition could be justified
physically only if a mechanism existed forcing the curtain to make an
abrupt turn after exiting the outlet—but none does. To clarify the
issue, Ref. 5 derived a more accurate, albeit less general, asymptotic
model based on non-hyperbolic equations (to which the criticisms of
Ref. 4 definitely do not apply), and this model was shown to also admit
solutions describing upward-bending curtains. Finally, Ref. 5 argued
that the question of observability of upward-bending curtains can only
be resolved via a stability study.

The present paper delivers just that. Since its goal is physical
understanding rather than detailed modeling, the simplest setting with
waves propagating upstream is considered: non-sheared curtains with
a large Froude number.

In Sec. II, it is shown that the temporal stability analysis (where
the frequencies of harmonic disturbances are sought as the eigenvalues
of the linearized problem) yields no solutions—neither stable nor
unstable. Such a result often implies stability—e.g., for the Couette and
Poiseuille flows in an inviscid fluid.6,7 In the present case, however, it
does not: as shown in Sec. III, the flow is convectively unstable with
respect to a vibration of the outlet and/or perturbation of the curtain’s
ejection velocity and/or angle. It should be emphasized that convective
instability and temporal stability rarely, if ever, arise in the same setting
(e.g., Ref. 8).

It is also shown in Sec. III that all downward-bending curtains
are stable.

II. FORMULATION OF THE PROBLEM
A. Governing equations

Consider a sheet of incompressible liquid (density q and surface
tension r) ejected from an infinitely long horizontal outlet—see Fig. 1.
Let the flow be two-dimensional and depend on a horizontal variable
x and vertical coordinate z. The shape of the sheet can be conveniently
described by a parametric representation of its centerline,
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x ¼ xðl; tÞ; z ¼ zðl; tÞ;

where the parameter l is the centerline’s arc length measured from the
midpoint of the outlet, and t is the time. It can be shown that the coor-
dinates of the centerline satisfy

@x
@l
¼ cos a;

@z
@l
¼ sin a; (1)

where aðl; tÞ is the angle between the sliding tangent to the centerline
and the horizontal.

To nondimensionalize the problem, introduce the half-width H
of the outlet and use it as a scale for the curtain’s half-thickness h. The
natural scale for the streamwise velocity in this problem is

U ¼ r
qH

� �1=2

:

The centerline’s coordinates (x, z) and arc length l will be nondimen-
sionalized on

L ¼ r
qgH

;

where g is the acceleration due to gravity. The time variable t will be
nondimensionalized on U/L.

Let the effect of gravity be weaker than inertia, so that the Froude
number is large,

U2

gH
� 1: (2)

Since gravity bends the curtain, whereas inertia keeps it straight, this
assumption makes the curtain’s curvature small and, thus, enables one
to take advantage of the slender-curtain approximation.

Assumption (2) alone is sufficient for solving the problem at
hand—but to make it simpler, assume also that the fluid is highly
viscous,

gH2

�U
� 1; (3)

where � is the kinematic viscosity. In this case, the streamwise velocity
u can be assumed to be non-sheared, i.e., independent of the cross-

stream coordinate (which will not be introduced). Thus, u depends
only on l and t—which dramatically simplifies the calculations
involved and lets one concentrate on the qualitative results.

Assumptions (2) and (3) were used in Ref. 3 to derive the follow-
ing set of equations:

@u
@t
þ u

@u
@l
¼ �sin a� @

2x
@t2

cos a� @
2z
@t2

sin a; (4)

@h
@t
þ @ uhð Þ

@l
¼ 0; (5)

2u
@a
@t
þ u2 � 1

h

� �
@a
@l
¼ �cos aþ @

2x
@t2

sin a� @
2z
@t2

cos a: (6)

To better understand the physics behind Eqs. (4)–(6), one needs to
identify the physical meaning of the terms in the equations derived.
While doing so, keep in mind that the coordinates system ðl; sÞ
depends on t and, thus, is non-inertial.

• The terms involving @2x=@2t and @2z=@2t in Eqs. (4) and (6)
describe the force of inertia due to the curtain’s local
acceleration.

• The first term in Eq. (6) describes the Coriolis force, with @a=@t
being the local angular velocity of the curtain’s rotation.

• The second term in Eq. (6) describes the centripetal acceleration
of liquid particles and the acceleration due to the capillary pres-
sure, with @a=@l being the curtain’s local curvature.

• The terms involving sin a in Eq. (4) and cos a in Eq. (6) describe
gravity.

It remains to fix the boundary conditions,

x; z; u; h; að Þ ¼ x0; z0; u0; h0; a0ð Þ at l ¼ 0: (7)

Since this paper is concerned with stability of curtains with respect to
vibration of the outlet and perturbation of the ejection parameters,
one should let x0, z0, u0, h0, and a0 be functions of t.

Given a suitable initial condition, set (1)–(7) determine the
unknowns ðx; z; u; h; aÞ as functions of ðl; tÞ.

B. Steady curtains

Steady curtains arise when the coefficients ðx0; z0; u0; h0; a0Þ in
the exit conditions do not depend on t. Without loss of generality, one
can then assume that the outlet is located at ðx; zÞ ¼ ð0; 0Þ and its
nondimensional half-thickness equals unity, so that Eq. (7) becomes

x; z; u; h; að Þ ¼ 0; 0; �u0; 1; �a0ð Þ at l ¼ 0;

where �u0 and �a0 are constants. Let the unknowns be also time-
independent,

x ¼ �xðlÞ; z ¼ �zðlÞ; u ¼ �uðlÞ; h ¼ �hðlÞ; a ¼ �aðlÞ:

Then, (1)–(6) become ordinary differential equations (ODEs); the
ODE for �x decouples from the rest of the set, whereas �z ; �h, and �a are
related to �u,

�z ¼ �u2
0 � �u2

2
; �h ¼ �u0

�u
; cos �a ¼

�u2
0 � 1

� �
cos �a0

�u�u0 � 1
: (8)

It is shown in Ref. 3 that if �u0 < 1, the curtain bends upward, whereas
curtains with �u0 > 1 bend downward (the value of the ejection angleFIG. 1. Setting.
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�a0 does not affect this pattern). Defining the Weber number as
We ¼ �u2

0, one recovers the criterion separating the two kinds of cur-
tains derived in Refs. 2 and 3.

Typical steady-curtain solutions (computed numerically) are
shown in Fig. 2. Observe that upper-bending (UB) curtains have a ter-
minal point—where the streamwise velocity vanishes, whereas its
thickness becomes infinite. The slender-curtain approximation fails
some distance before this occurs, but the solution in the rest of the
domain remains valid. It was conjectured in Ref. 3 that once the cur-
tain reaches its terminal point, the liquid just splashes down.

For downward-bending (DB) curtains, the solution exists and is
smooth for all l � 0.

Also observe that near-critical curtains (�u0 ! 1)—both UB and
DB—can be subdivided into a segment of high curvature, followed by
a nearly vertical segment. This tendency can be confirmed via a
straightforward asymptotic analysis of the governing equations.

C. Linear disturbances

The stability of liquid curtains has been examined before—both
theoretically9–14 and experimentally.1,10,15–17 All these studies, how-
ever, were concerned with vertical curtains.

To examine oblique ones, seek a solution of the governing set
(1)–(7) in the form

x ¼ �xðlÞ þ ~xðl; tÞ; z ¼ �zðlÞ þ ~zðl; tÞ; (9)

u ¼ �uðlÞ þ ~uðl; tÞ; h ¼ �hðlÞ þ ~hðl; tÞ; (10)

a ¼ �aðlÞ þ ~aðl; tÞ; (11)

where �xðlÞ, etc., describe a steady curtain, and ~xðl; tÞ, etc., represent a
small disturbance. The exit conditions should also be perturbed,

x0 ¼ ~x0ðtÞ; z0 ¼ ~z0ðtÞ; (12)

u0 ¼ �u0 þ ~u0ðtÞ; h0 ¼ �h0 þ ~h0ðtÞ; a0 ¼ �a0 þ ~a0ðtÞ: (13)

Substituting Eqs. (9)–(13) in Eqs. (1)–(7) and linearizing the latter,
one obtains

@~x
@l
¼ �~a sin �a;

@~z
@l
¼ ~a cos �a; (14)

@~u
@t
þ @ �u~uð Þ

@l
¼ �~a cos �a � @

2~x
@t2

cos �a � @
2~z
@t2

sin �a; (15)

@~h
@t
þ @

@l
�u~h þ ~u�h
� �

¼ 0; (16)

2�u
@~a
@t
þ �u2 � 1

�h

� �
@~a
@l
þ 2�u~u þ

~h
�h
2

 !
@�a
@l

¼ ~a sin �a þ @
2~x
@t2

sin �a � @
2~z
@t2

cos �a; (17)

~x ¼ ~x0; ~z ¼ ~z0 at l ¼ 0; (18)

~u ¼ ~u0; ~h ¼ ~h0; ~a ¼ ~a0 at l ¼ 0: (19)

This boundary-value problem can be rewritten in terms of the Fourier
transforms of the tilded variables—or simply by assuming that they
oscillate harmonically with a frequency x, i.e.,

~x ¼ x̂ðlÞe�ixt ; ~z ¼ ẑðlÞe�ixt ;

~u ¼ ûðlÞe�ixt ; h ¼ ĥðlÞe�ixt ; a ¼ âðlÞe�ixt ;

~x0 ¼ x̂0e�ixt ; ~z0 ¼ z0e�ixt ;

~u0 ¼ û0e�ixt ; ~h0 ¼ ĥ0e�ixt ; ~a0 ¼ â0e�ixt :

As a result, (14)–(19) become

dx̂
dl
¼ �â sin �a;

dẑ
dl
¼ â cos �a; (20)

�ixû þ d �uûð Þ
dl
¼ �â cos �a þ x2 x̂ cos �a þ ẑ sin �að Þ; (21)

�ixĥ þ d
dl

�uĥ þ û�h
� �

¼ 0; (22)

�2ix�uâ þ �u2 � 1
�h

� �
dâ
dl
þ 2�uû þ ĥ

�h
2

 !
d�a
dl

¼ â sin �a � x2 x̂ sin �a � ẑ cos �að Þ; (23)

x̂; ẑ ; û; ĥ; â
� �

¼ x̂0; ẑ0; û0; ĥ0; â0

� �
at l ¼ 0: (24)

D. How one should define stability in this problem?

Stability of curtains can be examined via boundary-value prob-
lem (20)–(24) in two different ways.

(i) One can eliminate the outlet perturbations by setting

x̂0 ¼ ẑ0 ¼ û0 ¼ ĥ0 ¼ â0 ¼ 0; (25)

and solve (20)–(25) as an eigenvalue problem for x. The
curtain is unstable if and only if there exists an eigenvalue
with Imx > 0. Such solutions describe self-amplifying dis-
turbances developing from an initial condition, no matter
how small.

(ii) Alternatively, one can assume that x is given—physically,
this implies that the exit parameters oscillate with a given
frequency. The stability of DB and UB curtains in this
approach should be defined differently (because the latter
exist on a finite domain in l).

FIG. 2. Trajectories of steady curtains with �a0 ¼ �p=4. Curves (1)–(8) correspond
to �u0 ¼ 0:5; 0:7; 0:9; 0:99; 1:01; 1:1; 1:5; and 2, respectively.
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(a) A DB curtain is stable if and only if the solution of Eqs.
(20)–(24) for all x and ðx̂0; ẑ0; û0; ĥ0; â0Þ is such that

lim
l!1

���� x̂�x
����þ
���� ẑ�z
����þ
���� û�u
����þ
���� ĥ�h
����þ
���� â�a
����

 !
<1; (26)

i.e., the disturbance does not outgrow the base flow in
the downstream direction.

(b) A UB curtain is stable if and only if the solution of Eqs.
(20)–(24) for all x and ðx̂0; ẑ0; û0; ĥ0; â0Þ remains finite
(does not involve a singularity).

Approaches (i) and (ii) are often called “temporal” and “spatial,”
respectively (e.g., Ref. 8) One can also distinguish two kinds of the lat-
ter instability: the absolute instability (when the disturbance at a given
l grows with t) and the convective instability (when disturbances are
steady, but grow downstream).

The temporal approach is used much more often than the spatial
one—but, in the present case, the former yields the trivial solution
only. This is evident from the fact that ODEs (20)–(23) are homoge-
neous, and all five boundary conditions (24) are fixed at the same end
point. Thus, the solution can be obtained by “shooting” from this end
point, and since the initial values of all of the unknowns are zero [due
to Eq. (25)], so is the whole solution.

Approach (ii) is examined in Sec. III.

III. STABILITY OF CURTAINS WITH RESPECT TO
PERTURBATIONS OF THE EXIT PARAMETERS
A. Downward-bending curtains (�u0 > 1)

To prove that a DB curtain is stable, it is sufficient to show that
all five linearly independent solutions of equations (20)–(23) are
bounded as l !1. This will be done by changing the independent
variable l ! n, where n ¼ �u�u0 � 1, and letting

x ¼ �u0 xnew; u ¼ unew
�u0

:

Omitting the subscript new, one can rewrite (20)–(23) in the form

�u2
0
dx̂
dn
¼ nþ 1ð Þâ; �u2

0
dẑ
dn
¼ C nþ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � C2
p â; (27)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � C2

p
nþ 1ð Þn

d
dn

nþ 1ð Þû½ � � ixû

¼ �C
n

â þ x2�u2
0

C
n
x̂ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � C2

p
n

ẑ

 !
; (28)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � C2

p
nþ 1ð Þn

d
dn

nþ 1ð Þĥ þ �u2
0

nþ 1
û

� 	
� ixĥ ¼ 0; (29)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � C2

q
dâ
dn
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � C2

p
n

� 2ix nþ 1ð Þ

" #
â

� C

n2
2û þ nþ 1

�u2
0

ĥ
� �

¼ x2�u2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � C2

p
n

x̂ þ C
n
ẑ

 !
: (30)

where

C ¼ �u2
0 � 1

� �
cos �a0:

Note that the coefficients of equations (27)–(30) are explicit [unlike
those of Eqs. (20)–(23), which are determined by the steady-curtain
ODEs].

Note that if the streamwise velocity �u is a non-monotonic func-
tion of l, the change l ! n is singular at the point where �uðlÞ has an
extremum. This circumstance does not pose a problem; however, as
criterion (26) implies that the stability properties of a DB curtain
depend on the large-distance asymptotics of the solution, i.e., in the
limit l !1 (corresponding to n!1). In this case, the curtain is
falling almost vertically, and �uðlÞ is indeed monotonic (increasing). In
principle, �uðlÞ of a DB curtain can be monotonic globally, but only if
�a0 � 0 (otherwise �uðlÞ first decreases and then starts to increase).

Denote the general solution of the (fifth-order) linear set
(27)–(30) by

w ¼ x̂ðnÞ; ẑðnÞ; ûðnÞ; ĥðnÞ; âðnÞ
h i

;

and represent it in the form

w ¼
X5
n¼1

cnwn;

where cn are arbitrary constants and wn are linearly independent solu-
tions. wn can be fixed by their asymptotic behaviors at infinity; these
behaviors had to be guessed—but, once they are, one can simply verify
the result via straightforward calculations.

The following asymptotic solutions of equations (27)–(30) have
been found for the limit n!1:

w1 � �Cn�1; 1;�ix�u2
0; 2�u4

0n
�3; �u2

0Cn�3

 �

;

w2;3 � 1; Cn�1;�2�u2
0Cn�2;62�u4

0Cn�7=2; ix�u2
0n
�1

h i
	n1=4þixeixðn62n1=2Þ;

w4 �
C

x2�u4
0
n�1;

C2

x2�u4
0
n�2;� ixþ 4ð ÞC2

3x2�u2
0

n�4;n�1;� C
ix�u2

0
n�2

" #
eixn;

w5 �
2 1þ ixð ÞC

x2�u2
0

n�2;
2 1þ ixð ÞC2

x2�u2
0

n�3; n�1;

"

2ix�u2
0n
�2;�2 1þ ixð ÞC

ix
n�3
#
eixn:

One with prior experience of working with curtains or jets can identify
the physical meanings of these solutions: w1 describes oscillations of
the curtain as a whole, w2 and w3 describe sinuous capillary waves
(both propagate downstream), w4 describes varicose disturbances, and
w5 is a stretching mode.

Recall that the stability criterion (26) involves also the
large-distance asymptotics of the steady curtain—for which (8) and
(1) yield

�x � C
�u2
0
n; �z � � 1

2�u2
0
n2; �u � 1

�u0
n; �h � �u0n

�1;

�a ! � p
2

as n!1:

Evidently, criterion (26) holds for any linear combination of solutions
wn.
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B. Upward-bending curtains (�u0 < 1)

To prove that UB curtains are unstable, it is sufficient to find a
single singular solution of set (27)–(30), but it turns out that a three-
parameter family of such exists. Keeping in mind that the terminal
point corresponds to n! �1, one can guess the asymptotics of these
solutions,

w � A1; A2; A3 nþ 1ð Þ�1; A3�u
2
0 nþ 1ð Þ�3;� A3Cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
p nþ 1ð Þ�1

� 	
;

where A1, A2, and A3 are arbitrary constants. Observe that, even
though the perturbations of the curtain’s coordinates remain finite,
those of the streamwise velocity, width, and direction tend to infinity.
Note also that the disturbance ĥ of the curtain’s width grows faster
than the width �h itself, which can be verified by deducing from Eq. (8)
that �h ¼ �u2

0ðnþ 1Þ�1.
To illustrate the spatial structure of disturbances, boundary-value

problem (20)–(24) was solved numerically. It has turned out that little
depends on which one of the exit parameters oscillates—or, mathe-
matically speaking, which subset of the constants ðx̂0; ẑ0; û0; ĥ0; â0Þ
in boundary conditions (24) are chosen to be non-zero. The depen-
dence on the frequency x and ejection angle �a0 is also weak, so the
ejection velocity �u0 is the only important parameter.

The typical structure of the disturbance is shown in Fig. 3: one
can see that the growth is confined to a narrow neighborhood of the
curtain’s terminal point. It can be shown analytically that, in the limit
�u0 ! 1� (near-critical UB curtains), this tendency becomes even
stronger.

IV. CONCLUDING REMARKS

Four points remain to be discussed.
First, the localized nature of instability of upper-bending curtains

suggests that they can be stabilized by “collecting” the whole curtain
via a collection nozzle positioned just below the terminal point. This
way, the unstable disturbances would never grow to a significant level,
but it remains to be seen if this can be done in a real experiment.

Second, the setting examined in this paper is not the first example
where the analysis of temporal instability is not representative of the
stability properties of the flow. The first example was reported in Refs.
18 and 19 for a liquid film in a rotating horizontal cylinder. It was
shown that a complete set of stable temporal modes exists—and yet
the flow is unstable with respect to non-harmonic perturbations devel-
oping a singularity in a finite time. This situation is, however, different
from the one examined in this paper, where the temporal analysis
yields neither stable nor unstable solutions.

Third, Ref. 20 found steady solutions describing oblique swirling
jets, which also bend against gravity. One can use this example to find
out whether an upward-bending flow is destined to be unstable—and
if it is, whether or not the instability is spatially localized. It is worth
adding here that the only class of “unusually” bending jets examined
previously has turned out to be unstable—to the extent that they break
down near the nozzle (as shown in Ref. 21 for jets from a rotating noz-
zle). One should keep in mind, however, that the instability in this case
could be caused by capillary effects rather than the jet’s curvature.

Fourth, the stability of curtains in this paper has been examined
only with respect to along-the-stream perturbations, whereas lateral
perturbations (with a wave vector perpendicular to the plane of Fig. 1)
have been neglected. For (unstable) upward-bending curtains, lateral
perturbations do not change anything—but they can, in principle,
destabilize downward-bending curtains. It is highly unlikely, however,
that they do, as they correspond to waves propagating along the outlet,
not toward it. Even more importantly, there is ample experimental evi-
dence that downward-bending curtains are stable.16,17,22 At the same
time, it is not easy to examine lateral perturbations theoretically, as
they require a three-dimensional extension of the governing equations,
and there is an intrinsic difficulty with this kind of asymptotic analyses
for curtains and jets.23,24
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