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We examine the stability of two-layer geostrophic flows with large displacement of the interface. The depth of 
the upper layer is assumed much smaller than the total depth of the fluid. It is proven that all westward and 
weak eastward flows are stable with respect to disturbances whose wavelengths is of the order of, or longer 
than the width of the flow. It is further demonstrated that westward flows are (locally) unstable with respect to 
short disturbances. 
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1. INTRODUCTION 

Stability of oceanic fronts and density-driven currents is an important problem of 
physical oceanography, however, the full equations of geophysical fluid dynamics are 
very complex and, generally speaking, do not allow analytical study. On the other 
hand, the traditional quasi-geostrophic approach is not applicable to fronts either, as 
the vertical displacement of isopycnal surfaces in frontal flows is large. Nevertheless, the 
Rossby number for most of real-ocean fronts and currents is small, which enabled 
Williams and Yamagata (1984), Cushman-Roisin et aZ. (1992) and Benilov (1992a) to 
modify the geostrophic formalism for large-amplitude geostrophic flows in a two-layer 
fluid and derive relatively simple asymptotic governing equations. Using these equa- 
tions, Benilov (1992a, b) and Swaters (1993) examined the stability of zonal flows with 
horizontal shear. It should be emphasized, however, that the dynamics of large- 
amplitude geostrophic flows depend strongly on the correlation between the following 
non-dimensional parameters: 

1) the Rossby number 

E = U / f L ,  

where U is the effective velocity scale, f is the Coriolis parameter and L is the hori- 
zontal spatial scale of the motion; 
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30 E. S. BENILOV AND B. CUSHMAN-ROISIN 

2) the ratio of the depth of the upper layer to the total depth of the ocean 

6 = H ,  J H ;  

3) the /?-effect number 

where Re is the earth's radius, 0 is the latitude, 

and g' = g ( A p / p )  is the reduced acceleration due to gravity (compare R, to the standard 
deformation radius given by Ri = m/f). Accordingly, the above results on the 
stability of zonal flows can be classified in the form of a table: 

Weak B-eflect: f i  - E~~~ Strong /?-eflect: f i  - E 

6 - 1  Benilov (1992a) Benilov (1992a) 
6 - E  
6 - E 2  Swaters (1993) Benilov (1992b) 

It is worth noting that the case 6 - e2 is hardly relevant to any real-ocean situation: 
given that the flow is geostrophic and E < 0.1, this condition entails the (absolutely 
unrealistic) constraint 6 < 0.01 (the typical ocean values are H - 2,000-6,000m, 
HI - 200-800m, 6 - 1/3 - 1/15). At the same time, there are two gaps in the table at 
6 - E,  and these regimes are quite possible in the ocean [for a detailed discussion of the 
parameter space of the problem see Cushman-Roisin et al. (1992)l. 

In this paper, we shall consider the stability of large-amplitude geostrophic flows 
with both horizontal and vertical shear for the case 6 - E.  

2. FORMULATION OF THE PROBLEM 

Consider a geostrophic 

flow of a two-layered fluid on the B-plane. If the interface displacement is of the order of 
the depth of the upper layer: 
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STABILITY OF GEOSTROPHIC FLOWS 31 

and the upper layer is much thinner than the total depth of the ocean: 

6 << 1, (3) 

the governing shallow-water equations can be reduced (Cushman-Roisin et al., 1992) to 

where we have defined 

h = L / H ,  p = p/g’H, 

and where the dimensional variables (the time f, the horizontal spatial variables (2, j), 
the depth of the upper layer Land the pressure in the bottom layer p) are marked with 
tildas. 

It should be emphasized that conditions (1)-(3) restrict the horizontal spatial scale of 
the flow. Indeed, if we substitute the geostrophic velocity scale 

into (1) and take into account (2), we obtain 

which can be rewritten as 

(k.J>>%. 
This inequality is the main restriction of our results. 

In order to further simplify system (4), we shall separate the cases of strong and weak 
p-effect and eliminate the (unrealistic) regimes with 6 5 E’. A straightforward asym- 
ptotic analysis yields 
weak p-effect: p - c3/*,  6 - E ( h  - E, p - E -  3/2, t - E -  3/2, x - y - l), 
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32 E. S. BENILOV AND B. CUSHMAN-ROISIN 

strong B-effect: B -  E,  6 - E (h  - E,P - E2,t - ~ - ~ , x  - y - l), 
(7) I h , + J ( p , h ) = V . [ h J ( h , V h ) ] + B h h , ,  

B ( p  + +h2), + V . [ h  J (h ,  Vh)] = 0. 

Both systems (6) and (7) admit the following steady solution: 

h ( x , y , t ) =  H(y), p(x,y,t)=P(y); H,P-tconst as y - t  & a; (8) 

which describes a localized zonal flow with both horizontal and vertical shear. 

of systems (6) and (7). 
In the next section we shall discuss the stability of solution (8) within the framework 

3. STABILITY OF FLOWS WITH THIN UPPER LAYER 

3.1 

It should be noted that system (6) coincides with the (h -t 0) limit of the corresponding 
system for flows with “thick (h - 1) upper layer [see equations (12) in Benilov, 1992a1. 
Emulating the results obtained by Benilov (1992a), we conclude that in the case ofweak 
B-effect all zonalJlows with thin upper layer are unstable. 

In order to illustrate this conclusion, we shall derive the stability boundary-value 
problem for equations (6) and solve it for a particular case of frontal flow. 

Following the standard procedure, we linearize equations (6) against the back- 
ground of steady solution (8), i.e. substitute 

The case of weak B-eflect 

into (6) and neglect the nonlinear terms. Substituting then 

h’(x,y,t) = h(y)exp[ik(x - 41, p’(x,y,t) = p(y)exp[ik(x - ct)], 

where c and k are the phase speed and wavenumber of a disturbance, we obtain 

(c + P,)h - H , p  = 0, 

(c + P,)(P,, - k2 P) - P,,,P - BP 
+ [H(H,h,  - H,,h)], - k2HH,h - BHh = 0. 

Eliminating p and introducing a new variable 4 such that 

h = Hy4, 

we write system (9) in the form 

(9) 
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STABILITY OF GEOSTROPHIC FLOWS 33 

where 

F = (C + P,)’ + H(H,)’. 

We shall look for perturbations localized in the vicinity of the flow: 

The boundary-value problem (1 l), (12) determines the eigenvalues c. The thick- 
upper-layer analogue of equation (1 1) was derived by Benilov (1992a) and differs from 
(1 1) only in the expression for F: 

F = (c + P,)’ + H (  1 - H)(H,)Z 

[which coincides with (1 1 b) in the limit H <c 13. Accordingly, the proof of instability by 
Benilov (1992a) can be easily generalized (or, rather, emulated) for our case. 

In order to illustrate the instability, consider the following frontal flow (Figure 1): 

0 for y~(-co,O], 

- u l  for y~[I,co); 

for YE( - co,O], 
~ y ) ” ~  for ~YE[O,II, P(y)= - u y  for ~E[O,II, 

( y  + ~ 1 ) ’ ~ ~  for YE[I, co); 

y = o  y = l  
1 

y2/3 1 

(y + a l ) z 3  

P = O  P = - LI y P = - u l  

Figure 1 Frontal flow (13). 
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34 E. S. BENILOV AND B. CUSHMAN-ROISIN 

where I is the (non-dimensional) width of the flow, u is the velocity in the bottom layer, 
and the constants a and y characterize H ( y )  for y < 0 and y 2 / ( a  2 - y/l). Substitution 
of (13) into (11) yields and equation with constant coefficients (which is why we chose 
this particular case): 

As the perturbation does not penetrate beyond the boundaries of the flow, the 
boundary conditions should be rewritten as follows: 

4+0 at y = O , l .  (15) 

The boundary-value problem (14), (15) can be readily solved: 

d=sin(?y), m = l , 2 , 3  ,... 

Formula (16) yields instability (Im c # 0) for 

and demonstrates that the growth rate grows with k and m: 

klmc+$ak as k,m+m. 

This unbounded growth is a result of inapplicability of (16) for k 2  2 &C1 [see restriction 
(6) with H , / H  = E and L - R , / k ] .  Thus, formula (16) [and the original system (4)] fails 
to describe the most unstable perturbations, whose wavelengths are comparable to the 
upper-layer deformation radius 
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STABILITY OF GEOSTROPHlC FLOWS 35 

and correspond to k2 - E -  ( e g  Killworth et al., 1984; Benilov, 1992a). However, (4) 
and (16) did enable us to establish the fact of instability and calculate the long-wave 
limit of the growth rate. Accordingly, estimate (17) for the spectral margins of the 
instability should be modified: 

where 

Evidently, 

which indicates that, in the transitional interval between the regimes of weak and 
strong 8-effect: 

all perturbations with wavelengths comparable to the width of the flow are stable and 
the instability takes place at short wavelengths. 

3.2 

As system (7) does not coincide with the ( h - + D )  limit of the corresponding thick- 
upper-layer equations [compare (7) to equations (14) in Benilov (1992a)], we cannot 
call on the corresponding results here. However, the structure of the two systems is 
similar, and we can employ the same approach. 

Following the standard procedure, we shall linearize equations (7) against the 
background of steady solution (8), assume the harmonic dependence of h and p on 
x and t and introduce, according to (lo), 4 instead of h: 

The case of strong 8-eflect 

[the thick-upper-layer analogue of this equation is 

-see Benilov (1992a)l. Now, multiplying (18) by 4* (where * denotes complex 
conjugate) and integrating it with respect to y over ( -  00, a), we obtain, after 
integration by parts and use of the boundary condition (12), 

I, c = - I 2 ,  
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where 

E. S .  BENILOV AND B. CUSHMAN-ROISIN 

Since Im I ,  = Im I ,  = 0, the condition 

I ,  # O  

guarantees that c = - 1 2 / 1 1  is real, which can be achieved by assuming that 

Hy(Y) 3 0 

or 

or 

Thus, flows that satisfy any of conditions (20a,b,c) are stable. From a physical 
viewpoint (20a) guarantees the stability of an arbitrary westward flow, while (20b) is 
more restrictive and guarantees the stability of only weak eastward flows. Indeed, 
for the parameter values representative of the subarctic front in the North Pacific 
(Roden, 1975), i.e. H = 5.5 km, Aplp = 1.3 x and 0 = 41"30, criterion (9b) becomes 

0 6 6 5  13cm/s, 

where fi is the dimensional velocity in the upper layer. Finally, condition (20c) describes 
a flow that does not decay at y + 

It should be emphasized that (20) is only a sufficient criterion of stability: flows that 
do not satisfy it are not necessarily unstable. However, numerical simulation of fronts 
with thin upper layer (Pavia, 1992; Benilov, 1993), as well as some analytical arguments 
(Benilov, 1993), show that double fronts (H, changes sign) are unstable. We also have 
numerical and analytical evidence (Benilov, 1993) of instability of strong eastwards 
flows violating conditions (20b). 

Finally, we note that in those strong-/&effect cases, where the instability does occur 
(Benilov, 1993), it has nothing to do with the weak-P-effect instability: in the transi- 
tional regime the latter shifts towards the short-wave region and eventually disappears 
from the asymptotic governing equations (7) completely. 

00. D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
9:

56
 1

4 
O

ct
ob

er
 2

01
4 



STABILITY OF GEOSTROPHIC FLOWS 37 

4. A WEDGE-LIKE FRONT 

In this section we shall consider the wedge-like front [see Cushman-Roisin (1986)] 
characterized by a uniform flow in the upper layer and a uniformly sheared flows in the 
lower layer: 

This flow always meets one of conditions (20) and, according to the above stability 
analysis, is stable. This simple example can provide a realistic estimate of the time scale 
of stable perturbations propagating along oceanic fronts. Substitution of (21) into (18) 
leads to the following equation for 6: 

where 

A =  

Equation (22) has a singularity at y = 0 (where the front intersects the surface of the 
ocean). We shall therefore assume that 

The other boundary condition results from our restriction to disturbances localized 
near the flow: 

The solution to (22), (24) strongly depends on the sign of A.  The case A < 0 corresponds 
to a continuous spectrum of non-trapped waves [+ (y )  oscillates as (vy) -+ - 031. These 
waves are long Rossby waves modified by the vertically and horizontally sheared 
current. 

If A > 0, the substitution 

reduces (22) to the Laguerre equation: 
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38 E. S. BENILOV AND B. CUSHMAN-ROISIN 

whose solution is bounded only if 

where n 2 0 is an integer. Taking into account (23) to return to the earlier notation, we 
obtain the phase speed of the wave perturbations: 

c, = u + (2n + 1)- p - u  

It is worth noting that the sign of the second term in formula (25) may be opposite to 
that of u. As a result, disturbances may propagate upstream. 

Finally, assuming for simplicity that u = s = 0 (no flow in the bottom layer), we shall 
evaluate c, for the subarctic front in the North Pacific (Roden, 1975). We assume that 
H = 5.5 km, A p l p  = 1.3 x 8 = 41’30 and the (dimensional) velocity in the upper 
layer is t?= 20cm/s (which corresponds to a frontal flow with HI = 300m and 
L= 200 km). For the disturbance with wavelength 100 km. formula (25) yields 

which indicates that nearly geostrophic disturbances on eastward zonal oceanic fronts 
propagate very slowly. Remarkably, stable disturbance on the westward flow with the 
same parameters propagate considerably faster: 

c‘, z 6.6cm/s, PI z 19.8 cm/s, 

Several dispersion curves (25) are shown in Figure 2. 

5. SHORT-WAVE INSTABILITY O F  FLOWS WITH STRONG fl-EFFECT 

It should be noted, however, that use of scaled equations like (4) in a stability analysis is 
always subject to criticism that possible instabilities have been “scaled out” of the 
problem. Accordingly, we should examine the stability of strong-p-effect flows with 
respect to short perturbations, which are not described by our asymptotic equations. 

Generally speaking, in order to take into account short disturbances, we should 
include the terms - Ah, into the first equation of the original system (4) [see Cushman- 
Roisin et al., 1992, equations (25), (26)], and then follow the standard scheme of 
stability analysis. It turns out, however, that the short-wave stability of geostrophic 
flows can be examined in a much simpler way. 

First of all, we observe that, if the wavelength of the disturbance is much smaller than 
the effective spatial scale of the mean flow, the stability analysis can be carried out 
locally in the approximation of small-amplitude geostrophic flows (indeed, mean 
variations of the upper-layer depth over the wavelength of a short perturbation is much 
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STABILITY OF GEOSTROPHIC FLOWS 

k (km-1) 

0 0.01 0.02 0.03 0.04 0.05 

c.l 

E 
L 

k (km-1) 

0 0.01 0.02 0.03 0.04 0.0s 

39 

Figme 2 Dispersion curves of stable disturbances on the wedge-like front with parameters H = 5.5 km, 
Ap/p = 1.3 x W 3 ,  0 = 41"30, l f i l =  2Ocrn/s, s = u = 0 (which corresponds to a frontal flow with H ,  = 300111 
and L =  200 km). a) eastward flow (5 > 0), n = 0-5. b) westward flow (5 < 0), n = 0-2. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
9:

56
 1

4 
O

ct
ob

er
 2

01
4 



40 E. S. BENILOV AND B. CUSHMAN-ROISIN 

smaller than its local value). Accordingly, we can make use of the results of Phillips’ 
model (1954). Writing the stability criterion of the latter in the non-dimensional form 

where U s  = - H ,  is the non-dimensional shear velocity; we see that the flow is stable 
with respect to short disturbances only if 

In the thin-upper-layer limit, criterion (26) can be reduced to 

and coincides with condition (20b). Correspondingly,flows (20b) are stable with respect 
to all disturbances. whereas flows (20a,c) are stable only with respect to long and 
“medium“ disturbances and (locally) unstable with respect to short perturbations. 

It can be conjectured that short-wave and “medium-wave” instabilities entail 
different behaviours of the mean flow. For one thing, the former is unlikely to destroy 
the flow, as it usually leads to randomization of unstable disturbances, and the resulting 
turbulent friction may stabilize the flow. Eventually, the short-wave instability may 
saturate at some level. while the “medium-wave” instability results in meandering of the 
mean flow and can break it up completely. 

6. CONCLUSIONS 

Thus, we have considered the stability of two-layered frontal flows with thin upper 
layer. It has been demonstrated that, if the p-effect is weak: 

all fronts are unstable. In the transitional regime: 

the instability shifts towards the short-wave region and in the regime of strong p-effect: 

may disappear completely [specifically, the short-wave instability disappears for 
moderate westward flows that satisfy condition (20b)l. However, the regime of strong 
/?-effect has its own set of instabilities (with respect to disturbances whose wavelength 
is of the order of the width of the flow), and the “medium-wave” stability can be 
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STABILITY OF GEOSTROPHIC FLOWS 41 

guaranteed only for frontal flows that satisfy one of conditions (20a, b, c). Summary of 
the results of this paper and Benilov (1992a) can be given in the following table: 

Weak p-effect: /? - E ~ / ~  Strong P-effect: /? - E 

h - 1  Benilov (1992a) Benilov (1992a) 
instability stability 

h - 6  this paper 
instability 

this paper 
stability/instability 

Finally, we should mention that the above analysis can be generalized for flows over 
weak (6H << H )  bottom topography. 
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