1 Eigenvalues and Eigenvectors

Let A be a $n \times n$ matrix whose elements are members of the field K, ($K = \mathbb{R}$ or \mathbb{C}), $\lambda \in K$ and $\mathbf{e} \neq \mathbf{0}$ a n-vector such that

$$A\mathbf{e} = \lambda \mathbf{e} \tag{1}$$

then λ is an *eigenvalue* of A, and \mathbf{e} a corresponding eigenvector. From Eq(1)

$$(\lambda I - A)\mathbf{e} = \mathbf{0}$$

and so λ must satisfy the CHARACTERISTIC equation:

$$det(\lambda I - A) = 0 (2)$$

It can be shown that

$$det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$
(3)

This is called the characteristic polynomial of A.

Note: In theory, Eq(2) can be used to find λ 's – than Eq(1) used to find the corresponding \mathbf{e} 's.

Example 1:

$$A = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$$

$$det(\lambda I - A) = det \begin{pmatrix} \lambda & -1 \\ 2 & \lambda + 3 \end{pmatrix}$$
$$= \lambda^2 + 3\lambda + 2$$
$$= 0 \Rightarrow \lambda = -1 \text{ or } -2$$

For $\lambda_1 = -1$

$$\begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \mathbf{e}_1 = (-1)\mathbf{e}_1 \ \Rightarrow \ \mathbf{e}_1 = \alpha_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \alpha_1 \in K$$

For $\lambda_2 = -2$

$$\begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \mathbf{e}_2 = (-2)\mathbf{e}_2 \implies \mathbf{e}_2 = \alpha_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \quad \alpha_2 \in K$$

2 Similarity

Two $n \times n$ matrices R and S are said to be similar if there exist an invertible matrix P such that

$$R = P^{-1}SP$$

Similar matrices have the same *spectrum* (set of eigenvalues):

$$det(\lambda I - R) = det(\lambda I - P^{-1}SP)$$

$$= det(\lambda P^{P} - P^{-1}SP)$$

$$= det(P^{-1}(\lambda I - S)P)$$

$$= detP^{-1}det(\lambda I - S)detP$$

$$= det(\lambda I - S)$$

-1

3 Diagonalisability

Recall that a diagonal matrix is a $n \times n$ matrix, all of whose off-diagonal entries are zero. We denote a diagonal matrix by $diag\{d_1, d_2, \ldots, d_n\}$ where d_1, d_2, \ldots, d_n are the diagonal entries.

The $n \times n$ matrix A is said to be diagonalisable if it is similar to a diagonal matrix. It can be shown that the diagonal entries of the diagonal matrix are the eigenvalues of A.

Not every square matrix is diagonalisable. A necessary and sufficient condition for A to be diagonalisable is that its eigenvectors form a *linearly independent* set.

Let A have spectrum $\lambda_1, \lambda_2, \dots, \lambda_n$ with associated eigenvectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ respectively. Then, for $i = 1, 2, \dots, n$ we have $A\mathbf{e}_i = \lambda_i \mathbf{e}_i$. Consider

$$A E = A [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n] = [A\mathbf{e}_1, A\mathbf{e}_2, \dots, A\mathbf{e}_n]$$

$$= [\lambda_1 \mathbf{e}_1, \lambda_2 \mathbf{e}_2, \dots, \lambda_n \mathbf{e}_n]$$

$$= [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n] \operatorname{diag} \{\lambda_1, \lambda_2, \dots, \lambda_n\}$$

$$= E \Lambda$$

where $E = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]$ and $\Lambda = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}$. Thus, if A is diagonalisable

$$A = E \Lambda E^{-1} \tag{4}$$

 Λ is unique up to ordering of the eigenvalues.

We note that it can be shown that eigenvectors corresponding to distinct eigenvalues are linearly independent; hence, if A has n distinct eigenvalues, it is diagonalisable.

Example 1 (Cont'd): $A = E \Lambda E^{-1}$

$$\begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$

We also note that the following corollary of Eq(4) which may be proven using induction

$$A^k = E \Lambda^k E^{-1}$$
 $k = 0, 1, \dots$ (5)

where it is also straightforward to show that

$$\Lambda^k = diag\{\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k\}$$
 (6)

4 Jordan Canonical Form

Although every square matrix is not diagonalisable, it is possible to show that every matrix A is similar to a Jordan Form matrix J, i.e.

$$A = P^{-1} J P$$

where J is a block diagonal matrix

$$J = diag\{J_1, J_2, \dots, J_s\} = \begin{pmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & J_s \end{pmatrix}$$

0

with each block J_i being of size $n_i \times n_i$ with $\sum n_i = n$ and of form

$$J_i = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}$$

where λ belongs to the spectrum of A. (The same eigenvalue may appear in more than one block of J). The Jordan Form of A is unique up to the ordering of the blocks. If A is diagonalisable, then its Jordan Form coincides with its diagonalised form.

It is straightforward to establish that

$$A^k = P^{-1} J^k P (7)$$

where $J^k = diag\{J_1^k, J_2^k, \dots, J_s^k\}$ and

$$J_{i}^{k} = \begin{pmatrix} \lambda^{k} & c_{k}(1)\lambda^{k-1} & c_{k}(2)\lambda^{k-2} & \cdots & c_{k}(n_{i}-1)\lambda^{k-n_{i}-1} \\ 0 & \lambda^{k} & c_{k}(1)\lambda^{k-1} & \cdots & c_{k}(n_{i}-2)\lambda^{k-n_{1}-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda^{k} \end{pmatrix}$$
(8)

where $c_k(j) = \binom{k}{j}$. Example 2:

$$\hat{A} = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$$

has eigenvalue $\lambda=-1$ (multiplicity 2) and associated eigenvector $\begin{pmatrix} 1\\-1 \end{pmatrix}$. Hence it is not diagonalisable since there are not two linear independent eigenvectors. However $(\hat{A}=P^{-1}\,J\,P)$

$$\begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 1/2 \\ -1 & 1/2 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1/2 & -1/2 \\ 1 & 1 \end{pmatrix}$$

5 Cayley-Hamilton Theorem

"Every square matrix satisfies its own characteristic equation". Example 1 (cont'd): $A = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$ has characteristic polynomial $\chi(\lambda) = \lambda^2 + 3\lambda + 2$. Hence the theorem says

$$A^2 + 3A + 2I = 0$$

$$\Rightarrow \begin{pmatrix} -2 & -3 \\ 6 & 7 \end{pmatrix} + \begin{pmatrix} 0 & 3 \\ -6 & -9 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Example 2 (cont'd): $\hat{A} = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$ has characteristic polynomial $\chi(\lambda) = \lambda^2 + 2\lambda + 1$. Here the theorem says

$$\hat{A}^2 + 2\hat{A} + I = 0$$

$$\Rightarrow \begin{pmatrix} -1 & -2 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ -2 & -4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

A corollary of the theorem is then: There exist scalars $s_0(k), s_1(k), \ldots, s_{n-1}(k)$ such that

$$A^k = \sum_{j=0}^{n-1} s_j(k) A^j$$

for all $k \geq 0$.

6 Computing e^{At}

By definition

$$e^{At} = \sum_{k=0}^{\infty} A^k \frac{t^k}{k!}$$

From Eq(7) this gives

$$e^{At} = P^{-1} \left(\sum_{k=0}^{\infty} diag\{J_1^k, J_2^k, \dots, J_s^k\} \frac{t^k}{k!} \right) P = P^{-1} diag\{e^{J_1}, e^{J_2}, \dots, e^{J_s}\} P$$

where it is straightforward but tedious to establish (using Eq(8)) that

$$e^{J_i} = \sum_{k=0}^{\infty} J_i^k \frac{t^k}{k!} = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} & \frac{t^2}{2} e^{\lambda t} & \cdots & \frac{t^{n_i - 1}}{(n_i - 1)!} e^{\lambda t} \\ 0 & e^{\lambda t} & te^{\lambda t} & \cdots & \frac{t^{n_i - 2}}{(n_i - 2)!} e^{\lambda t} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & e^{\lambda t} \end{pmatrix}$$

When A is diagonalisable, Eq(5) gives

$$e^{At} = E\left(\sum_{k=0}^{\infty} diag\{\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k\} \frac{t^k}{k!}\right) E^{-1} = E \, diag\{e^{\lambda_1 t}, e^{\lambda_2 t}, \dots, e^{\lambda_n t}\} E^{-1}$$
(9)

Example 1 (cont'd): Since A is diagonalisable

$$\begin{array}{rcl} e^{At} & = & E \, diag\{e^{\lambda_1 t}, e^{\lambda_2 t}\} \, E^{-1} \\ & = & \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} e^{-t} & 0 \\ 0 & e^{-2t} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \\ & = & \begin{pmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{pmatrix} \end{array}$$

Example 2 (cont'd): Since \hat{A} is not diagonalisable

$$e^{\hat{A}t} = P^{-1} e^{Jt} P$$

$$= \begin{pmatrix} 1 & 1/2 \\ -1 & 1/2 \end{pmatrix} \begin{pmatrix} e^{-t} & te^{-t} \\ 0 & e^{-t} \end{pmatrix} \begin{pmatrix} 1/2 & -1/2 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} (1+t)e^{-t} & te^{-t} \\ -te^{-t} & (1-t)e^{-t} \end{pmatrix}$$

7 Rank of a Matrix

Let M be a $p \times q$ matrix (of real entries). If we view the rows of the matrix as vectors in the space \mathbb{R}^q , the number of linearly independent vectors in this set is called the *row rank* of M. Similarly, if we view the columns of M as vectors in \mathbb{R}^p , the number of linearly independent vectors in this set is called the *column rank* of M. A standard result tells us that these two ranks are equal, and so we talk about the rank of M.

One method of computing the rank of M is to perform a series of row operations on M (e.g. as in the elimination phase of the Gauss Elimination algorithm) which reduces M to row echelon form. The number of non-zero rows is then the rank. Of course, this procedure could also be applied to M^T - why?

4

Example: Consider the 3×4 matrix

$$\left(\begin{array}{cccc}
4 & -2 & 5 & 1 \\
2 & 6 & -3 & -1 \\
1 & 7 & -2 & -4
\end{array}\right)$$

Reduction to row echelon form yields after the first pass

$$\left(\begin{array}{cccc}
4 & -2 & 5 & 1 \\
0 & 7 & -11/2 & -3/2 \\
0 & 15/2 & -13/4 & -17/4
\end{array}\right)$$

and then after the second pass

$$\left(\begin{array}{cccc}
4 & -2 & 5 & 1 \\
0 & 7 & -11/2 & -3/2 \\
0 & 0 & 37/14 & -37/14
\end{array}\right)$$

Thus rank = 3.

The rank of M must satisfy

$$rank \le \min(p, q)$$

A matrix is said to be of full rank if rank = $\min(p, q)$. When M is square (p = q), then M is of full rank (i.e. rank = p) if and only if $\det M \neq 0$.

8 When does the linear system My = b have a solution?

Let $M = [\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_q]$ be a $p \times q$ matrix where \mathbf{m}_j is the j-th column of M, let $\mathbf{y} = [y_1, y_2, \dots, y_q]^T$ the $q \times 1$ the vector of unknowns and $\mathbf{b} = [b_1, b_2, \dots, b_p]^T$ the $p \times 1$ vector of "right hand sides". We can rewrite the system of equations as

$$\mathbf{b} = \mathbf{m}_1 y_1 + \mathbf{m}_2 y_2 + \dots + \mathbf{m}_q y_q$$

i.e, **b** must be expressible as a linear combination of the columns of M, which leads to the condition that if **b** can be any element of a particular subspace, then $\{\mathbf{m}_1, \mathbf{m}_2, \ldots, \mathbf{m}_q\}$ must span this subspace. In particular, if **b** may be any element of \mathbb{R}^p then the columns of M must span this space, i.e. M must be be of full rank.

_