
A Review of some Linear Algebra Topics

1 Eigenvalues and Eigenvectors

Let A be a n×n matrix whose elements are members of the field K, ( K = R
or C), λ ∈ K and e 6= 0 a n-vector such that

Ae = λe (1)

then λ is an eigenvalue of A, and e a corresponding eigenvector.
From Eq(1)

(λI − A)e = 0

and so λ must satisfy the CHARACTERISTIC equation:

det(λI − A) = 0 (2)

It can be shown that

det(λI − A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 (3)

This is called the characteristic polynomial of A.
Note: In theory, Eq(2) can be used to find λ ’s – than Eq(1) used to find the
corresponding e ’s.
Example 1:

A =

(
0 1
−2 −3

)

det(λI − A) = det

(
λ −1
2 λ+ 3

)
= λ2 + 3λ+ 2

= 0 ⇒ λ = −1 or − 2

For λ1 = −1(
0 1
−2 −3

)
e1 = (−1)e1 ⇒ e1 = α1

(
1
−1

)
, α1 ∈ K

For λ2 = −2(
0 1
−2 −3

)
e2 = (−2)e2 ⇒ e2 = α2

(
1
−2

)
, α2 ∈ K

2 Similarity

Two n×n matrices R and S are said to be similar if there exist an invertible
matrix P such that

R = P−1SP

Similar matrices have the same spectrum (set of eigenvalues):

det(λI −R) = det(λI − P−1SP )

= det(λP P − P−1SP )

= det
(
P−1(λI − S)P

)
= detP−1det(λI − S)detP

= det(λI − S)
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3 Diagonalisability

Recall that a diagonal matrix is a n × n matrix, all of whose off-diagonal
entries are zero. We denote a diagonal matrix by diag{d1, d2, . . . , dn} where
d1, d2, . . . , dn are the diagonal entries.

The n× n matrix A is said to be diagonalisable if it is similar to a diagonal
matrix. It can be shown that the diagonal entries of the diagonal matrix are
the eigenvalues of A.

Not every square matrix is diagonalisable. A necessary and sufficient condi-
tion for A to be diagonalisable is that its eigenvectors form a linearly inde-
pendent set.
Let A have spectrum λ1, λ2, . . . , λn with associated eigenvectors e1, e2, . . . , en
respectively. Then, for i = 1, 2, . . . , n we have Aei = λiei. Consider

A E = A [e1, e2, . . . , en] = [Ae1, Ae2, . . . , Aen]

= [λ1e1, λ2e2, . . . , λnen]

= [e1, e2, . . . , en] diag{λ1, λ2, . . . , λn}
= E Λ

where E = [e1, e2, . . . , en] and Λ = diag{λ1, λ2, . . . , λn}.
Thus, if A is diagonalisable

A = E Λ E−1 (4)

Λ is unique up to ordering of the eigenvalues.

We note that it can be shown that eigenvectors corresponding to distinct
eigenvalues are linearly independent; hence, if A has n distinct eigenvalues,
it is diagonalisable.
Example 1 (Cont’d): A = E Λ E−1(

0 1
−2 −3

)
=

(
1 1
−1 −2

)(
−1 0
0 −2

)(
2 1
−1 −1

)
We also note that the following corollary of Eq(4) which may be proven

using induction
Ak = E Λk E−1 k = 0, 1, . . . (5)

where it is also straightforward to show that

Λk = diag{λk1, λk2, . . . , λkn} (6)

4 Jordan Canonical Form

Although every square matrix is not diagonalisable, it is possible to show
that every matrix A is similar to a Jordan Form matrix J , i.e.

A = P−1 J P

where J is a block diagonal matrix

J = diag{J1, J2, . . . , Js} =


J1 0 · · · 0
0 J2 · · · 0
...

...
...

...
0 0 · · · Js
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with each block Ji being of size ni × ni with
∑
ni = n and of form

Ji =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


where λ belongs to the spectrum of A. (The same eigenvalue may appear
in more than one block of J). The Jordan Form of A is unique up to the
ordering of the blocks. If A is diagonalisable, then its Jordan Form coincides
with its diagonalised form.

It is straightforward to establish that

Ak = P−1 Jk P (7)

where Jk = diag{Jk1 , Jk2 , . . . , Jks } and

Jki =


λk ck(1)λk−1 ck(2)λk−2 · · · ck(ni − 1)λk−ni−1

0 λk ck(1)λk−1 · · · ck(ni − 2)λk−n1−2

...
...

...
...

...
0 0 0 · · · λk

 (8)

where ck(j) =
(
k
j

)
. Example 2 :

Â =

(
0 1
−1 −2

)
has eigenvalue λ = −1 (multiplicity 2) and associated eigenvector

(
1
−1

)
.

Hence it is not diagonalisable since there are not two linear independent
eigenvectors. However (Â = P−1 J P )(

0 1
−1 −2

)
=

(
1 1/2
−1 1/2

)(
−1 1
0 −1

)(
1/2 −1/2
1 1

)

5 Cayley-Hamilton Theorem

“Every square matrix satisfies its own characteristic equation”.
Example 1 (cont’d): A = ( 0 1

−2 −3 ) has characteristic polynomial
χ(λ) = λ2 + 3λ+ 2. Hence the theorem says

A2 + 3A+ 2I = 0

⇒
(
−2 −3
6 7

)
+

(
0 3
−6 −9

)
+

(
2 0
0 2

)
=

(
0 0
0 0

)
Example 2 (cont’d): Â = ( 0 1

−1 −2 ) has characteristic polynomial
χ(λ) = λ2 + 2λ+ 1. Here the theorem says

Â2 + 2Â+ I = 0

⇒
(
−1 −2
2 3

)
+

(
0 2
−2 −4

)
+

(
1 0
0 1

)
=

(
0 0
0 0

)
A corollary of the theorem is then: There exist scalars s0(k), s1(k), . . . , sn−1(k)
such that

Ak =
n−1∑
j=0

sj(k)Aj

for all k ≥ 0.

3



6 Computing eAt

By definition

eAt =
∞∑
k=0

Ak
tk

k!

From Eq(7) this gives

eAt = P−1

(
∞∑
k=0

diag{Jk1 , Jk2 , . . . , Jks }
tk

k!

)
P = P−1 diag{eJ1 , eJ2 , . . . , eJs} P

where it is straightforward but tedious to establish (using Eq(8)) that

eJi =
∞∑
k=0

Jki
tk

k!
=


eλt teλt t2

2
eλt · · · tni−1

(ni−1)!e
λt

0 eλt teλt · · · tni−2

(ni−2)!e
λt

...
...

...
...

...
0 0 0 · · · eλt


When A is diagonalisable, Eq(5) gives

eAt = E

(
∞∑
k=0

diag{λk1, λk2, . . . , λkn}
tk

k!

)
E−1 = E diag{eλ1t, eλ2t, . . . , eλnt}E−1

(9)
Example 1 (cont’d): Since A is diagonalisable

eAt = E diag{eλ1t, eλ2t} E−1

=

(
1 1
−1 −2

)(
e−t 0
0 e−2t

)(
2 1
−1 −1

)
=

(
2e−t − e−2t e−t − e−2t
−2e−t + 2e−2t −e−t + 2e−2t

)
Example 2 (cont’d): Since Â is not diagonalisable

eÂt = P−1 eJt P

=

(
1 1/2
−1 1/2

)(
e−t te−t

0 e−t

)(
1/2 −1/2
1 1

)
=

(
(1 + t)e−t te−t

−te−t (1− t)e−t
)

7 Rank of a Matrix

Let M be a p× q matrix (of real entries). If we view the rows of the matrix
as vectors in the space Rq. the number of linearly independent vectors in this
set is called the row rank of M . Similarly, if we view the columns of M as
vectors in Rp, the number of linearly independent vectors in this set is called
the column rank of M . A standard result tells us that these two ranks are
equal, and so we talk about the rank of M .

One method of computing the rank of M is to perform a series of row
operations on M (e.g. as in the elimination phase of the Gauss Elimination
algorithm) which reduces M to row echelon form. The number of non-zero
rows is then the rank. Of course, this procedure could also be applied to MT

- why?
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Example: Consider the 3× 4 matrix 4 −2 5 1
2 6 −3 −1
1 7 −2 −4


Reduction to row echelon form yields after the first pass 4 −2 5 1

0 7 −11/2 −3/2
0 15/2 −13/4 −17/4


and then after the second pass 4 −2 5 1

0 7 −11/2 −3/2
0 0 37/14 −37/14


Thus rank = 3.

The rank of M must satisfy

rank ≤ min(p, q)

A matrix is said to be of full rank if rank = min(p, q). When M is square
(p = q), then M is of full rank ( i.e. rank = p) if and only if detM 6= 0.

8 When does the linear system My = b have

a solution?

Let M = [m1,m2, . . . ,mq] be a p × q matrix where mj is the j-th column
of M , let y = [y1, y2, . . . , yq]

T the q × 1 the vector of unknowns and b =
[b1, b2, . . . , bp]

T the p × 1 vector of “right hand sides”. We can rewrite the
system of equations as

b = m1y1 + m2y2 + · · ·+ mqyq

i.e, b must be expressible as a linear combination of the columns of M , which
leads to the condition that if b can be any element of a particular subspace,
then {m1,m2, . . . ,mq} must span this subspace. In particular, if b may be
any element of Rp then the columns of M must span this space, i.e. M must
be be of full rank.
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