1 Generalities: Flows & Maps

1. Linear Transformations

The transformation $\mathbf{x} = T\mathbf{z}$ transforms

- (a) the linear flow $\dot{\mathbf{x}} = A\mathbf{x}$ to $\dot{\mathbf{z}} = T^{-1}AT\mathbf{z}$,
- (b) the linear map $\mathbf{x}' = A\mathbf{x}$ to $\mathbf{z}' = T^{-1}AT\mathbf{z}$,
- (c) the nonlinear flow

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = A\mathbf{x} + O(\mathbf{x})$$
to
$$\dot{\mathbf{z}} = \mathbf{T}^{-1}\mathbf{f}(\mathbf{T}\mathbf{z}) = T^{-1}AT\mathbf{z} + T^{-1}O(T\mathbf{z})$$

(d) and the nonlinear map

$$\mathbf{x}' = \mathbf{f}(\mathbf{x}) = A\mathbf{x} + O(\mathbf{x})$$
to
$$\mathbf{z}' = T^{-1}\mathbf{f}(T\mathbf{z}) = T^{-1}AT\mathbf{z} + T^{-1}O(T\mathbf{z})$$

where O(.) are the nonlinear or higher order terms. In particular, if A is diagonalisable, then it is possible to choose

$$T = E \stackrel{\triangle}{=} \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}$$

and

$$T^{-1}AT = \Lambda \stackrel{\triangle}{=} \operatorname{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\},$$

where

$$A\mathbf{e}_i = \lambda_i \mathbf{e}_i, \quad i = 1, 2, \dots, n.$$

2. Computing A^k and e^{At} when A is diagonalisable ($A=E\Lambda E^{-1}$)

$$A^k = E\Lambda^k E^{-1}$$
$$e^{At} = Ee^{\Lambda t} E^{-1}$$

3. The quadratic function

$$q(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij} x_i x_j = \mathbf{x}^T P \mathbf{x},$$

where $P = P^T$, is positive definite iff the leading principal minors of P are all positive (Sylvester's criterion).

4. The characteristic polynomial of the $n \times n$ matrix A is $\chi(\lambda) = det(\lambda I - A)$. It may be computed by

$$\chi(\lambda) = \lambda^2 - tr \lambda + det$$
, if $n = 2$

$$\chi(\lambda) = \lambda^3 - tr \,\lambda^2 + \left(\sum_{i=1}^3 M_{ii}\right) \lambda - det, \quad \text{if } n = 3$$

where tr, M_{ii} and det are the trace, the minor associated with position (i, i) and the determinant of A respectively.

- 5. *Hartman-Grobman* Theorem: The behaviour of a dynamical system in a neighbourhood of a hyperbolic fixed point is qualitatively the same as that of the linearised system. A hyperbolic fixed point is one whose *Jacobian* matrix has **no** eigenvalue with
 - (a) real part equal to zero (flows),
 - (b) modulus equal to one (maps).

2 Flows

- 6. Stability of flows and characteristic polynomials:
 - (a) A fixed point of the 2-d flow with characteristic polynomial $\chi(\lambda) = \lambda^2 + a_1\lambda + a_0$ is stable iff

$$a_1 > 0,$$
 $a_0 > 0.$

(b) A fixed point of the 3-d flow with characteristic polynomial $\chi(\lambda) = \lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$ is stable iff

$$a_2 > 0$$
, $a_1 > 0$, $a_0 > 0$, $a_2 a_1 > a_0$.

7. Invariant manifolds of 2-d flows: If the flow

$$\dot{x} = f(x, y), \qquad \dot{y} = g(x, y)$$

with fixed point at the origin has an associated invariant manifold y = h(x), then h is the solution of

$$g(x, h(x)) = Dh(x)f(x, h(x)), \qquad h(0) = 0$$

8. Lyapunov's Direct Method for flows (Lyapunov Functions): For the system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \qquad \mathbf{0} = \mathbf{f}(\mathbf{0})$$

the origin is

- (a) locally stable if there exists a positive definite function $V(\mathbf{x})$ with negative semi-definite time derivative \dot{V} ,
- (b) locally asymptotically stable if in addition \dot{V} is negative definite (strict Lyapunov function).

The origin is globally asymptotically stable if V is a strict Lyapunov function for which $V \to \infty$ as $||\mathbf{x}|| \to \infty$ (V is radially unbounded).

9. Lyapunov's Direct Method for Linear flows: The origin of the system $\dot{\mathbf{x}} = A\mathbf{x}$ is globally asymptotically stable if for any real symmetric positive definite Q, the solution P of the Lyapunov Equation

$$A^T P + PA = -Q$$

is also real symmetric positive definite.

10. A modified LaSalle Invariance Principle for flows: For the system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \qquad \mathbf{0} = \mathbf{f}(\mathbf{0})$$

if (i) V is positive definite, (ii) $\frac{dV}{dt}$ is negative semi-definite and (iii) the union of all invariant sets with $\frac{dV}{dt}=0$ is $M=\{\mathbf{0}\}$, then $\mathbf{0}$ is asymptotically stable. In particular for the system

$$\dot{x} = y, \qquad \dot{y} = -c(x) - b(y),$$

where b and c are continuous functions with the same sign as their arguments, the origin $\mathbf{0}$ is asymptotically stable. This may be shown using

$$V(\mathbf{x}) = \frac{1}{2}x_2^2 + \int_0^{x_1} c(s) \, ds.$$

- 11. Index Theory:
 - (a) The index of a node or focus is +1, of a saddle is -1.
 - (b) Every periodic orbit encloses fixed points whose indices sum to +1.
- 12. Dulac's criterion: Consider the 2-d continuously differentiable flow $\dot{x} = f(x, y)$, $\dot{y} = g(x, y)$. If there exists a continuously differentiable function $\beta(x, y)$ such that on a simply connected region R_0 ,

$$\frac{\partial}{\partial x} \left[\beta(x, y) f(x, y) \right] + \frac{\partial}{\partial y} \left[\beta(x, y) g(x, y) \right]$$

is unchanged in sign, then there are **no** periodic orbits contained in R_0 .

- 13. Poincaré Bendixson theorem: Consider the 2-d continuously differentiable flow $\dot{x} = f(x,y)$, $\dot{y} = g(x,y)$. If R_1 is a closed bounded trapping region containing no fixed points, then there exists a periodic orbit in R_1 .
- 14. Cartesian-Polar transformation:

$$\begin{array}{cccc} r^2 & = & x^2 + y^2 \\ \theta & = & \arctan\left(\frac{y}{x}\right) \end{array} \Leftrightarrow \begin{array}{ccc} x & = & r\cos\theta \\ y & = & r\sin\theta \end{array}$$

15. Method of Computation of a Periodic Orbit for a particular class of 2-d flows using a *Poincaré* Map: For the flow described by

$$\dot{r} = F(r,\theta),$$
 $r(0) = r_0$
 $\dot{\theta} = G(\theta),$ $\theta(0) = 0,$

writing the solution of this initial value problem as $(R(t,r_0), \Theta(t))$, then

- (a) the period (T) of the orbit satisfies $\Theta(T) = 2\pi$,
- (b) the *Poincaré* Map is given by $r_1 = P(r_0) \stackrel{\triangle}{=} R(T, r_0)$.

The periodic orbit is the fixed point of the $Poincar\acute{e}$ Map, i.e. the solution r_e of

$$r_e = P(r_e) = R(T, r_e).$$

The stability of r_e is determined by the absolute value of $P'(r_e)$. With $s(t, r_0) \stackrel{\triangle}{=} \frac{\partial R}{\partial r_0}(t, r_0)$, s can be computed as the solution of

$$\dot{s} = \frac{\partial F}{\partial r}(r, \theta)s,$$
 $s(0, r_0) = 1.$

Then $P'(r_e) = s(T, r_e)$.

- 16. The 1-d flow $\dot{x} = f(x, a)$ has a fixed point x_e which depends on the parameter a; x_e has a bifurcation at $a = a_c$ if $Df(x_e, a_c) = 0$.
- 17. Hopf Bifurcation: The 2-d flow $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, a)$ has a fixed point \mathbf{x}_e which depends on the parameter a. If the eigenvalues may be written as

$$\lambda(a) = \Re(a) \pm i\Im(a)$$

and for which, at $a = a_c$,

$$\Re(a_c) = 0, \qquad \Im(a_c) \neq 0, \qquad \frac{d\Re}{da}(a_c) \neq 0$$

then \mathbf{x}_e has a *Hopf* Bifurcation at $a = a_c$.

3 Maps

18. Stability of 2-d maps and characteristic polynomials:

A fixed point of the 2-d map with characteristic polynomial $\chi(\lambda) = \lambda^2 + a_1\lambda + a_0$ is stable iff

$$|a_1| < 1 + a_0, |a_0| < 1.$$

19. Invariant manifolds of 2-d maps: If the map

$$x' = f(x, y), \qquad y' = g(x, y)$$

with fixed point at the origin has an associated invariant manifold y = h(x), then h is the solution of

$$g(x, h(x)) = h(f(x, h(x))), h(0) = 0$$

20. Lyapunov's Direct Method for maps (Lyapunov Functions): For the system

$$\mathbf{x}' = \mathbf{f}(\mathbf{x}), \qquad \mathbf{0} = \mathbf{f}(\mathbf{0})$$

the origin is

- (a) locally stable if there exists a positive definite function $V(\mathbf{x})$ with negative semi-definite $\Delta V \stackrel{\triangle}{=} V(\mathbf{x}') V(\mathbf{x})$,
- (b) locally asymptotically stable if in addition ΔV is negative definite (strict Lyapunov function).

The origin is globally asymptotically stable if V is a strict Lyapunov function for which $V \to \infty$ as $||\mathbf{x}|| \to \infty$ (V is radially unbounded).

21. Lyapunov's Direct Method for Linear maps: The origin of the system $\mathbf{x}' = A\mathbf{x}$ is globally asymptotically stable if for any real symmetric positive definite Q, the solution P of the Discrete Lyapunov Equation

$$A^T P A - P = -Q$$

is also real symmetric positive definite.

- 22. The 1-d map x' = f(x, a) has a fixed point x_e which depends on the parameter a; x_e has a bifurcation at $a = a_c$ if $|Df(x_e, a_c)| = 1$.
- 23. Neimark-Sacker Bifurcation: The 2-d map $\mathbf{x}' = \mathbf{f}(\mathbf{x}, a)$ has a fixed point \mathbf{x}_e which depends on the parameter a. If the eigenvalues may be written as

$$\lambda(a) = R(a)e^{\pm i\theta(a)}$$

and for which, at $a = a_c$,

$$R(a_c) = 1,$$
 $0 < \theta(a_c) < \pi,$ $\frac{dR}{da}(a_c) \neq 0,$ $e^{\pm ik\theta(a_c)} \neq 1,$ $k = 1, 2, 3, 4,$

then \mathbf{x}_e has a Neimark-Sacker Bifurcation at $a = a_c$.